Cho x,y,z khác 0 và x khác y khác z thỏa mãn : x2 - xy = y2 - yz = z2 - zx = a
1, CMR a khác 0
2 , CMR : 1 / x + 1/ y + 1/z =0
3, TÍnh M = x / z + z/y + y/x
( Mình làm đc câu 1, 2 rồi các bạn giúp mình câu 3 nha ! )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
AB=CD (cặp cạnh đối hbh)
AM=AB/2 và CN=CD/2
=> AM=CN (1)
AM thuộc AB; CN thuộc CD mà AB//CD => AM//CN (2)
Từ (1) và (2) => AMCN là hbh(Tứ giác có một cặp cạnh đối // và = nhau thì tứ giác đó là hbh)
2.
a. M là trung điểm AB; N là trung điểm AC => MN là đường trung bình của tgABC
=> MN//BC => MN//BP và MN=BP=BC/2
=> BMNP là hbh (lý do như bài 1)
b. Ta có BMNP là hbh và ^B=90 => BMNP là HCN
\(BC=\sqrt{AC^2-AB^2}=\sqrt{5^2-3^2}=4cm.\)
Từ kq câu a => MN=BC/2=4/2=2 cm
C/m tương tự câu a có NP là đường trung bình của tg ABC => NP=AB/2=3/2=1,5 cm
Chu vi BMNP là
(2+1,5)x2=7 cm
a) x3 - 9x2 + 14x = 0
<=> x( x2 - 9x + 14 ) = 0
<=> x( x2 - 2x - 7x + 14 ) = 0
<=> x[ x( x - 2 ) - 7( x - 2 ) ] = 0
<=> x( x - 2 )( x - 7 ) = 0
<=> x = 0 hoặc x = 2 hoặc x = 7
b) x3 - 5x2 + 8x - 4 = 0
<=> x3 - 4x2 - x2 + 4x + 4x - 4 = 0
<=> ( x3 - 4x2 + 4x ) - ( x2 - 4x + 4 ) = 0
<=> x( x2 - 4x + 4 ) - ( x - 2 )2 = 0
<=> x( x - 2 )2 - ( x - 2 )2 = 0
<=> ( x - 2 )2( x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}\)
c) x4 - 2x3 + x2 = 0
<=> x2( x2 - 2x + 1 ) = 0
<=> x2( x - 1 )2 = 0
<=> \(\orbr{\begin{cases}x^2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
d) 2x3 + x2 - 4x - 2 = 0
<=> ( 2x3 + x2 ) - ( 4x + 2 ) = 0
<=> x2( 2x + 1 ) - 2( 2x + 1 ) = 0
<=> ( 2x + 1 )( x2 - 2 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\x^2-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\pm\sqrt{2}\end{cases}}\)
a) ( x2 + x )2 - 2( x2 + x ) - 15 (*)
Đặt t = x2 + x
(*) <=> t2 - 2t - 15
= t2 + 3t - 5t - 15
= t( t + 3 ) - 5( t + 3 )
= ( t + 3 )( t - 5 )
= ( x2 + x + 3 )( x2 + x - 5 )
b) ( x2 + 2x )2 + 9x2 + 18x + 20
= ( x2 + 2x )2 + 9( x2 + 2x ) + 20 (*)
Đặt t = x2 + 2x
(*) <=> t2 + 9t + 20
= t2 + 4t + 5t + 20
= t( t + 4 ) + 5( t + 4 )
= ( t + 4 )( t + 5 )
= ( x2 + x + 4 )( x2 + x + 5 )
c) ( x2 + 3x + 1 )( x2 + 3x + 2 ) - 6 (*)
Đặt t = x2 + 3x + 1
(*) <=> t( t + 1 ) - 6
= t2 + t - 6
= t2 - 2t + 3t - 6
= t( t - 2 ) + 3( t - 2 )
= ( t - 2 )( t + 3 )
= ( x2 + 3x + 1 - 2 )( x2 + 3x + 1 + 3 )
= ( x2 + 3x - 1 )( x2 + 3x + 4 )
d) ( x2 + 8x + 7 )( x + 3 )( x + 5 ) + 15
= ( x2 + 8x + 7 )( x2 + 8x + 15 ) + 15 (*)
Đặt t = x2 + 8x + 7
(*) <=> t( t + 8 ) + 15
= t2 + 8t + 15
= t2 + 3t + 5t + 15
= t( t + 3 ) + 5( t + 3 )
= ( t + 3 )( t + 5 )
= ( x2 + 8x + 7 + 3 )( x2 + 8x + 7 + 5 )
= ( x2 + 8x + 10 )( x2 + 8x + 12 )
M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1
= [ ( a + 1 )( a + 4 ) ][ ( a + 2 )( a + 3 ) ] + 1
= ( a2 + 5a + 4 )( a2 + 5a + 6 ) + 1
Đặt t = a2 + 5a + 4
M = t( t + 2 ) + 1
= t2 + 2t + 1
= ( t + 1 )2
= ( a2 + 5a + 4 + 1 )2
= ( a2 + 5a + 5 )2
Vì a nguyên => a2 + 5a + 5 nguyên
Vậy M = ( a + 1 )( a + 2 )( a + 3 )( a + 4 ) + 1 là bình phương của một số nguyên ( đpcm )
2) \(\hept{\begin{cases}^{x^2-xy=y^2-yz}\left(1\right)\\^{y^2-yz=z^2-zx}\left(2\right)\\^{z^2-zx=x^2-xy}\left(3\right)\end{cases}}\)
lấy (2) - (1) suy ra\(2yz=2y^2+xy+xz-x^2-z^2\)
lấy (3) - (1) suy ra \(2xy=zx+yz-z^2+2x^2-y^2\)
lấy (3) - (2) suy ra \(2zx=xy+yz+2z^2-x^2-y^2\)
cộng lại đc \(yz+xz+xy=0\) do đó \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{yz+xz+xy}{xyz}=0\)
Ta có A = |x - 2015| + |x - 2016|
= |x - 2015| + |2016 - x|
\(\ge\)|x - 2015 + 2016 - x| = 1
Dấu "=" xảy ra <=> \(\left(x-2015\right)\left(2016-x\right)\ge0\)
TH1 : \(\hept{\begin{cases}x-2015\ge0\\2016-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2015\\x\le2016\end{cases}}\Rightarrow2015\le x\le2016\)
TH2 : \(\hept{\begin{cases}x-2015\le0\\2016-x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le2015\\x\ge2016\end{cases}}\left(\text{loại}\right)\)
Vậy Min A = 1 <=> \(2015\le x\le2016\)
b) Ta có B = |x - 5| + |x - 7|+ |2x - 18|
= |x - 5| + |x - 7|+ |18 - 2x|
\(\ge\)|x - 5 + x - 7| + |18 - 2x|
= |2x - 12| + |18 - 2x|
\(\ge\)|2x - 12 + 18 - 2x| = 6
Dấu "=" xảy ra <=> \(\left(2x-12\right)\left(18-2x\right)\ge0\)
TH1 : \(\hept{\begin{cases}2x-12\ge0\\18-2x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge6\\x\le9\end{cases}}\Rightarrow6\le x\le9\)
TH2 : \(\hept{\begin{cases}2x-12\le0\\18-2x\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\le6\\x\ge9\end{cases}}\)(loại)
Vậy Min B = 6 <=> \(6\le x\le9\)
Ta có : \(x^2-xy=y^2-yz=z^2-zx\)Cộng 3 vế , suy ra :
\(x^2-xy+y^2-yz+z^2-zx=0\)\(< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
Do \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-z\right)^2\ge0\\\left(z-x\right)^2\ge0\end{cases}< =>\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0}\)
Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}x-y=0\\y-z=0\\z-x=0\end{cases}< =>x=y=z}\)
Khi đó ta được : \(M=\frac{x}{z}+\frac{z}{y}+\frac{y}{x}=1+1+1=3\)( do x=y=z )
Bạn ơi đề bài cho a khác 0 mà bạn