K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2022

\(\left(1.x+9.\frac{1}{y}\right)^2\le\left(1^2+9^2\right)\left(x^2+\frac{1}{y^2}\right)\Rightarrow\sqrt{x^2+\frac{1}{y^2}}\ge\frac{1}{\sqrt{82}}\left(x+\frac{9}{y}\right)\)

\(TT:\sqrt{y^2+\frac{1}{z^2}}\ge\frac{1}{\sqrt{82}}\left(y+\frac{9}{z}\right);\sqrt{z^2+\frac{1}{x^2}}\ge\frac{1}{\sqrt{82}}\left(z+\frac{9}{x}\right)\)

\(S\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{9}{x}+\frac{9}{y}+\frac{9}{z}\right)\ge\frac{1}{\sqrt{82}}\left(x+y+z+\frac{81}{x+y+z}\right)\)

\(=\frac{1}{\sqrt{82}}\left[\left(x+y+z+\frac{1}{x+y+z}\right)+\frac{80}{x+y+z}\right]\ge\sqrt{82}\)

30 tháng 1 2021

Ta có: \(\hept{\begin{cases}f\left(1\right)=1\\f\left(2\right)=2\end{cases}}\Leftrightarrow\hept{\begin{cases}1+a+b=1\\4+2a+b=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=0\\2a+b=-2\end{cases}}\)

Trứ 2 vế đi ta được: \(\left(2a+b\right)-\left(a+b\right)=-2\Leftrightarrow a=-2\Rightarrow b=2\)

Vậy \(f\left(x\right)=x^2-2x+2\) khi đó \(f\left(4\right)=4^2-2\cdot4+2=10\)

Vậy f(4) = 10

28 tháng 1 2021

toán lớp 10 á

2 tháng 1 2022

Điều kiện: \(x^2-mx+4\ne0,\forall x\inℝ\)

Vì \(x^2+x+4>0,\forall x\inℝ\)

nên \(\left|\frac{x^2+x+4}{x^2-mx+4}\right|\le2,\forall x\inℝ\)

\(\Leftrightarrow x^2+x+4\le2\left(x^2-mx+4\right)\)

\(\Leftrightarrow x^2-\left(2m+1\right)x+4\ge0\)

\(\Leftrightarrow\frac{-5}{2}\le m\le\frac{-3}{2}\)

27 tháng 1 2021

Ta dễ có hệ: \(\hept{\begin{cases}\sin\alpha+\cos\alpha=\sqrt{2}\\\sin^2\alpha+\cos^2\alpha=1\end{cases}}\)

Đặt \(\sin\alpha=x;\cos\alpha=y\)thì hệ trở thành \(\hept{\begin{cases}x+y=\sqrt{2}\\x^2+y^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=\sqrt{2}\\\left(x+y\right)^2-2xy=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=\sqrt{2}\\xy=\frac{1}{2}\end{cases}}\)

x, y là nghiệm của phương trình \(t^2-\sqrt{2}t+\frac{1}{2}=0\Leftrightarrow\left(t-\frac{1}{\sqrt{2}}\right)^2=0\Leftrightarrow t=\frac{1}{\sqrt{2}}\)

\(\Rightarrow x=y=\frac{1}{\sqrt{2}}\)hay \(\sin\alpha=\cos\alpha=\frac{1}{\sqrt{2}}\)suy ra \(\tan\alpha=\cot\alpha=1\)