K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các phân số có tổng tử số và mẫu số là 84 là \(\dfrac{0}{84};\dfrac{1}{83};...;\dfrac{83}{1}\)

Số phân số thỏa mãn là 83-0+1=84(phân số)

1 tháng 3

a) Diện tích trần của căn phòng:

\(4,7\times4=18,8\left(m^2\right)\)

Diện tích xung quanh của căn phòng là:

\(\left(4,7+4\right)\times2\times3,5=60,9\left(m^2\right)\)

Diện tích cần sơn là:

\(18,8+60,9-9,7=70\left(m^2\right)\)

b) Sơn cả căn phòng hết số tiền là:

\(70:1\times180000=12600000\left(đ\right)\)

ĐS: ... 

1 tháng 3

Cảm ơn anh nhé 

\(-\dfrac{9}{25}\cdot17\dfrac{2}{3}-\left(-\dfrac{3}{5}\right)^2\cdot\dfrac{22}{3}\)

\(=-\dfrac{9}{25}\cdot\dfrac{53}{3}-\dfrac{9}{25}\cdot\dfrac{22}{3}\)

\(=-\dfrac{9}{25}\left(\dfrac{53}{3}+\dfrac{22}{3}\right)=-\dfrac{9}{25}\cdot25=-9\)

1 tháng 3

\(\dfrac{3}{7}\cdot\left(-\dfrac{2}{5}\right)\cdot2\dfrac{1}{2}\cdot20\cdot\dfrac{19}{72}\)

\(=\dfrac{3}{7}\cdot\left(-\dfrac{2}{5}\right)\cdot\dfrac{5}{2}\cdot20\cdot\dfrac{19}{72}\)

\(=\left(\dfrac{3}{7}\cdot\dfrac{19}{72}\right)\cdot\left(-\dfrac{2}{5}\cdot\dfrac{5}{2}\right)\cdot20\)

\(=\dfrac{19}{168}\cdot-1\cdot20\)

\(=\dfrac{19}{168}\cdot-20\)

\(=\dfrac{19\cdot-5}{42}\)

\(=\dfrac{-95}{42}\)

1 tháng 3

Bài 2:

a) ĐKXĐ: \(\left\{{}\begin{matrix}x+3\ne0\\x-3\ne0\\9-x^2\ne0\end{matrix}\right.\Leftrightarrow x\ne\pm3\)

b) \(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}-\dfrac{18}{9-x^2}\)

\(A=\dfrac{3}{x+3}+\dfrac{1}{x-3}+\dfrac{18}{x^2-9}\)

\(A=\dfrac{3\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{x+3}{\left(x+3\right)\left(x-3\right)}+\dfrac{18}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{3x-9+x+3+18}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{4x+12}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{4\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}\)

\(A=\dfrac{4}{x-3}\) 

c) Thay `x=-1` vào A ta có:

\(A=\dfrac{4}{-1-3}=\dfrac{4}{-4}=-1\)

d) `A=-4` khi: \(\dfrac{4}{x-3}=-4\)

\(\Leftrightarrow x-3=-1\)

\(\Leftrightarrow x=2\left(tm\right)\)

Bài 1:

a: ĐKXĐ: x<>3

\(\dfrac{9}{x-3}+\dfrac{3x}{3-x}\)

\(=\dfrac{9}{x-3}-\dfrac{3x}{x-3}=\dfrac{9-3x}{x-3}\)

\(=\dfrac{-3\left(x-3\right)}{x-3}=-3\)

b: \(\dfrac{5}{x+5}+\dfrac{-4}{x+4}\)

\(=\dfrac{5\left(x+4\right)-4\left(x+5\right)}{\left(x+5\right)\left(x+4\right)}\)

\(=\dfrac{5x+20-4x-20}{\left(x+5\right)\left(x+4\right)}=\dfrac{x}{\left(x+5\right)\left(x+4\right)}\)

c: \(\dfrac{x+5}{2x-3}-\dfrac{2x-7}{3-2x}-\dfrac{x+4}{3-2x}\)

\(=\dfrac{x+5}{2x-3}+\dfrac{2x-7}{2x-3}+\dfrac{x+4}{2x-3}\)

\(=\dfrac{x+5+2x-7+x+4}{2x-3}\)

\(=\dfrac{4x+2}{2x-3}\)

d: \(\dfrac{x^2-y^2}{10x^3y}:\dfrac{x-y}{5xy}\)

\(=\dfrac{\left(x-y\right)\left(x+y\right)}{10x^3y}\cdot\dfrac{5xy}{x-y}\)

\(=\dfrac{x+y}{1}\cdot\dfrac{5xy}{10x^3y}\)

\(=\dfrac{x+y}{2x^2}\)

e: \(\dfrac{2x^2-20x+50}{3x+3}\cdot\dfrac{x^2-1}{4\left(x-5\right)^3}\)

\(=\dfrac{2\left(x^2-10x+25\right)}{3\left(x+1\right)}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{4\left(x-5\right)^3}\)

\(=\dfrac{2\left(x-5\right)^2}{4\left(x-5\right)^3}\cdot\dfrac{x-1}{3}\)

\(=\dfrac{x-1}{3\cdot2\left(x-5\right)}=\dfrac{x-1}{6x-30}\)

f: \(\dfrac{x-2}{x+1}:\dfrac{x^2-5x+6}{x^2-2x-3}\)

\(=\dfrac{x-2}{x+1}:\dfrac{\left(x-2\right)\left(x-3\right)}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{x-2}{x+1}\cdot\dfrac{\left(x+1\right)}{x-2}=1\)

g: \(\dfrac{x}{x-2y}+\dfrac{x}{x+2y}+\dfrac{4xy}{4y^2-x^2}\)

\(=\dfrac{x}{x-2y}+\dfrac{x}{x+2y}-\dfrac{4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{x\left(x+2y\right)+x\left(x-2y\right)-4xy}{\left(x-2y\right)\left(x+2y\right)}\)

\(=\dfrac{2x^2-4xy}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x\left(x-2y\right)}{\left(x-2y\right)\left(x+2y\right)}=\dfrac{2x}{x+2y}\)

h: \(\dfrac{1}{x-y}+\dfrac{3xy}{y^3-x^3}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{1}{x-y}-\dfrac{3xy}{\left(x-y\right)\cdot\left(x^2+xy+y^2\right)}+\dfrac{x-y}{x^2+xy+y^2}\)

\(=\dfrac{x^2+xy+y^2-3xy+\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)

\(=\dfrac{2\left(x-y\right)^2}{\left(x-y\right)\left(x^2+xy+y^2\right)}=\dfrac{2\left(x-y\right)}{x^2+xy+y^2}\)

i: \(\left(\dfrac{2}{x+2}+\dfrac{2}{x-1}\right)\cdot\dfrac{x^2-4}{4x^2-1}\)

\(=\dfrac{2\left(x-1\right)+2\left(x+2\right)}{\left(x+2\right)\left(x-1\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\)

\(=\dfrac{2\left(2x+1\right)}{x-1}\cdot\dfrac{x+1}{\left(2x-1\right)\left(2x+1\right)}=\dfrac{2\left(x+1\right)}{\left(2x-1\right)\left(x-1\right)}\)

j: \(1+\dfrac{x^3-x}{x^2+1}\cdot\left(\dfrac{1}{1-x}-\dfrac{1}{1-x^2}\right)\)

\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\left(\dfrac{-1}{x-1}+\dfrac{1}{\left(x-1\right)\left(x+1\right)}\right)\)

\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{-x-1+1}{\left(x-1\right)\left(x+1\right)}\)

\(=1+\dfrac{x\left(x-1\right)\left(x+1\right)}{x^2+1}\cdot\dfrac{-x}{\left(x-1\right)\left(x+1\right)}\)

\(=1-\dfrac{x^2}{x^2+1}=\dfrac{1}{x^2+1}\)

loading...

loading...

loading...

loading...

Bài 5:

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

\(\widehat{ABC}\) chung

Do đó: ΔABC~ΔHBA

=>\(\dfrac{AC}{HA}=\dfrac{BC}{BA}\)

=>\(AC\cdot AB=AH\cdot BC\)

b: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=7,5^2-4,5^2=36=6^2\)

=>AC=6(cm)

=>\(AH=\dfrac{4.5\cdot6}{7,5}=\dfrac{27}{7,5}=3,6\left(cm\right)\)

ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(HB^2=4,5^2-3,6^2=2,7^2\)

=>HB=2,7(cm)

HB+HC=BC

=>HC+2,7=7,5

=>HC=4,8(cm)

c: Xét ΔBAH có BK là phân giác

nên \(\dfrac{KH}{KA}=\dfrac{BH}{BA}\left(1\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(2\right)\)

Ta có: ΔBAH~ΔBCA

=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\dfrac{AD}{DC}=\dfrac{HK}{KA}\)

1 tháng 3

a) Từ 100 đến 1000 có 10 số tròn trăm

b) Từ 100 đến 200 có 11 số tròn chục

c) ??? đề chưa rõ 

ai làm được mik tick cho nha