giải hệ phương trình
\(x^2+y^3=1\)
\(x^2+y^5=x^3+y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
hu hu hu hu huhuh huhu giúp đi mình cho bạn nick minh vip đó mình hack rồi
Ta có: \(\frac{a}{\left(a+1\right)\left(b+1\right)}+\frac{b}{\left(b+1\right)\left(c+1\right)}+\frac{c}{\left(c+1\right)\left(a+1\right)}\ge\frac{3}{4}\)\(\Leftrightarrow\frac{a\left(c+1\right)+b\left(a+1\right)+c\left(b+1\right)}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge\frac{3}{4}\)\(\Leftrightarrow4\left(ab+bc+ca\right)+4\left(a+b+c\right)\ge3abc+3\left(ab+bc+ca\right)+3\left(a+b+c\right)+3\)\(\Leftrightarrow ab+bc+ca+a+b+c\ge6\)(abc = 1)
Bất đẳng thức cuối đúng theo bất đẳng thức Cô - si nên ta có điều phải chứng minh
Đẳng thức xảy ra khi a = b = c = 1
Ta có: \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=2\Leftrightarrow\left(1-\frac{a}{a+1}\right)+\left(1-\frac{b}{b+1}\right)+\left(1-\frac{c}{c+1}\right)=1\)\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)\(\Leftrightarrow\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)+\left(a+1\right)\left(b+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)\(\Leftrightarrow a+b+c+2=abc\ge3\sqrt[3]{abc}+2\)(Bất đẳng thức Cô - si)
Đặt \(t=\sqrt[3]{abc}\)thì \(t^3\ge3t^3+2\Leftrightarrow\left(t-2\right)\left(t+1\right)^2\ge0\Leftrightarrow t\ge2\)(Do \(\left(t+1\right)^2>0\forall t>0\))
\(\Rightarrow abc\ge8\)
\(\Rightarrow ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge12\)(đpcm)
Đẳng thức xảy ra khi a = b = c = 2
Ta có:
\(\left(a+1\right)^2\left(b+1\right)^2=\left[\left(a+1\right)\left(b+1\right)\right]^2=\left(1+a+b+ab\right)^2\)
\(=\left[\left(ab+1\right)+\left(a+b\right)\right]^2\ge4\left(a+b\right)\left(ab+1\right)\)
\(=4a^2b+4ab^2+4a+4b=\left(4a^2b+4b\right)+\left(4ab^2+4a\right)\)
\(=4a\left(1+b^2\right)+4b\left(1+a^2\right)\)
\(\Rightarrow\frac{\left(a+1\right)^2\left(b+1\right)^2}{1+c^2}\ge\frac{4a\left(1+b^2\right)}{1+c^2}+\frac{4b\left(1+a^2\right)}{1+c^2}\)
Tương tự ta chứng minh được:
\(\frac{\left(b+1\right)^2\left(c+1\right)^2}{1+a^2}\ge\frac{4c\left(1+b^2\right)}{1+a^2}+\frac{4b\left(1+c^2\right)}{1+a^2}\)
\(\frac{\left(a+1\right)^2\left(c+1\right)^2}{1+b^2}\ge\frac{4a\left(1+c^2\right)}{1+b^2}+\frac{4c\left(1+a^2\right)}{1+b^2}\)
Cộng vế 3 BĐT trên lại ta được:
\(VT\ge4a\left(\frac{1+b^2}{1+c^2}+\frac{1+c^2}{1+b^2}\right)+4b\left(\frac{1+a^2}{1+c^2}+\frac{1+c^2}{1+a^2}\right)+4c\left(\frac{1+a^2}{1+b^2}+\frac{1+b^2}{1+a^2}\right)\)
\(\ge8a+8b+8c=8\left(a+b+c\right)=8\cdot3=24\) (BĐT Cauchy)
Dấu "=" xảy ra khi: a = b = c = 1
Áp dụng bất đẳng thức AM - GM, ta được:
\(\left(a+1\right)^2\left(b+1\right)^2=\left(ab+1+a+b\right)^2\ge4\left(ab+1\right)\left(a+b\right)=4a\left(1+b^2\right)+4b\left(1+a^2\right)\)\(\Rightarrow\frac{\left(a+1\right)^2\left(b+1\right)^2}{1+c^2}\ge4a.\frac{1+b^2}{1+c^2}+4b.\frac{1+a^2}{1+c^2}\)
x = 0 hoặc 1
y = 0 hoặc 1
Vì 0^n = 0
Và 1^n = 1
nói cái gì không hiểu có tâm chút giải hết nguyên bài đi