\(\left(3x+1\right)^2-4.\left(x-2\right)^2\)=
Giai dung nha, ai giai dung mk tick cho
Cung la bai phan tich da thuc thanh nhan tu dung hang dang thuc(cua lop 8)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=0< =>\left(x+y+z\right)^2=0< =>x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)
\(< =>x^2+y^2+z^2=0< =>x=y=z=0\)
\(B=\left(-1\right)^{2007}+0+1^{2009}=0\)
x+y+z=0
\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)
\(\Leftrightarrow x^2+y^2+z^2=0\)( vì xy+yz+zx=0)
Mà \(x^2+y^2+z^2\ge0\forall x,y,z\Rightarrow x=y=z=0\)
\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)
= -1+0+1=0
Vậy B=0
Ta có a + b + c = 0
=> a + b = -c
=> (a + b)2 = (-c)2
=> a2 + b2 + 2ab = c2
=> a2 + b2 - c2 = -2ab
=> (a2 + b2 - c2)2 = (-2ab)2
=> a4 + b4 + c4 + 2a2b2 - 2a2c2 - 2b2c2 = 4a2b2
=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2
Khi đó a2 + b2 + c2 = 14
<=> (a2 + b2 + c2)2 = 142
=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 196
=> a4 + b4 + c4 + a4 + b4 + c4 = 196 (Vì a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2)
=> 2(a4 + b4 + c4) = 196
=> a4 + b4 + c4 = 98
Sửa lại đề : AM = NC
Ta có : AB // CD ( tứ giác ABCD là hình bình hành )
\(\Rightarrow BM//DN\left(1\right)\)
Ta có : AB = AM + MB
DC = DN + NC
mà AB = DC ( tứ giác ABCD là hình bình hành ) ; AM = NC (gt)
\(\Rightarrow MB=DN\left(2\right)\)
\(\Rightarrow\)Tứ giác BMDN là hình bình hành (đpcm)
\(4x\left(x-2018\right)-x+2018=0\)
\(4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\left(x-2018\right)\left(4x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)
xài dấu [ thì nên dùng dấu tương đương nha @greninja
\(4x\left(x-2018\right)-x+2018=0\)
\(\Leftrightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(x-2018\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)
Vậy x=1/4 hoặc x=2018
a ) xy + 1 - x - y
= x ( y - 1 ) + 1 - y
= x ( y - 1 ) - ( y - 1 )
= ( x - 1 ) ( y - 1 )
b ) x2 + ab + ac + bx
= ( b + x )x + a( b + c )
= ( b + x )1x + 1a( b + c )
= ( b + x ) ( x + a ) ( b + c )
c ) ax + bx - cx + a + b - c
= ( a + b - c )x + a + b - c
= ( a + b - c )x + ( a + b - c )1
= ( a + b - c ) ( x + 1 )
Gọi I là giao điểm của BC và MD
Vì MBDC là hình bình hành
\(\Rightarrow IB=IC\)
Gọi K là giao điểm của AD và ME
Vì MAED là hình bình hành
\(\Rightarrow KD=KA\)
Xét \(\Delta AMD\)có MK và AI là các đường trung tuyến
=> G là trọng tâm của \(\Delta AMD\)( G là giao điểm của MK và AI )
\(\Rightarrow GI=\frac{1}{3}AI\)
=> AI là đường trung tuyến của tam giác ABC
Mà \(GI=\frac{1}{3}AI\)
Nên G là trong tâm của tam giác ABC
=> G là điểm cố định
Vậy khi M di động thì đương thẳng ME luôn đi qua điểm G cố định
ghi rõ ra
\(\Leftrightarrow\left(3x-1\right)^2-4^2=0\)
\(\Leftrightarrow\left(3x-1-4\right)\left(3x-1+4\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\Leftrightarrow\orbr{\begin{cases}3x-5=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)