K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2020

ghi rõ ra

17 tháng 10 2020

\(\Leftrightarrow\left(3x-1\right)^2-4^2=0\)

\(\Leftrightarrow\left(3x-1-4\right)\left(3x-1+4\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\Leftrightarrow\orbr{\begin{cases}3x-5=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)

17 tháng 10 2020

\(x+y+z=0< =>\left(x+y+z\right)^2=0< =>x^2+y^2+z^2+2\left(xy+yz+zx\right)=0\)

\(< =>x^2+y^2+z^2=0< =>x=y=z=0\)

\(B=\left(-1\right)^{2007}+0+1^{2009}=0\)

17 tháng 10 2020

x+y+z=0 

\(\Rightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2\left(xy+yz+xz\right)=0\)

\(\Leftrightarrow x^2+y^2+z^2=0\)( vì xy+yz+zx=0)

Mà \(x^2+y^2+z^2\ge0\forall x,y,z\Rightarrow x=y=z=0\)

\(\Rightarrow B=\left(0-1\right)^{2007}+0^{2008}+\left(0+1\right)^{2009}\)

= -1+0+1=0

Vậy B=0

17 tháng 10 2020

kết quả bằng :36*x^2

17 tháng 10 2020

Ta có a + b + c = 0

=> a + b = -c

=> (a + b)2 = (-c)2

=> a2 + b2 + 2ab = c2

=> a2 + b2 - c2 = -2ab

=> (a2 + b2 - c2)2 = (-2ab)2

=> a4 + b4 + c4 + 2a2b2 - 2a2c2 - 2b2c2 = 4a2b2

=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2

Khi đó a2 + b2 + c2 = 14

<=> (a2 + b2 + c2)2 = 142

=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 196

=> a4 + b4 + c4 + a4 + b4 + c4 = 196 (Vì a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2)

=> 2(a4 + b4 + c4) = 196

=> a4 + b4 + c4 = 98

17 tháng 10 2020

Bạn ơi coi lại đề giúp mình để mình giúp cho

17 tháng 10 2020

Nếu đề là : (x+2)^2 + 2(x+3)=(x+1)^2
THÌ MÌNH LÀM ĐC

17 tháng 10 2020

Sửa lại đề : AM = NC

                     A B C D M N

Ta có : AB // CD ( tứ giác ABCD là hình bình hành )

\(\Rightarrow BM//DN\left(1\right)\)

Ta có : AB = AM + MB

             DC = DN + NC

mà AB = DC ( tứ giác ABCD là hình bình hành ) ; AM = NC (gt)

\(\Rightarrow MB=DN\left(2\right)\)

\(\Rightarrow\)Tứ giác BMDN là hình bình hành (đpcm)

 

17 tháng 10 2020

\(4x\left(x-2018\right)-x+2018=0\)

\(4x\left(x-2018\right)-\left(x-2018\right)=0\)

\(\left(x-2018\right)\left(4x-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-2018=0\\4x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=2018\\x=\frac{1}{4}\end{cases}}\)

17 tháng 10 2020

xài dấu [ thì nên dùng dấu tương đương nha @greninja

\(4x\left(x-2018\right)-x+2018=0\)

\(\Leftrightarrow4x\left(x-2018\right)-\left(x-2018\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(x-2018\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-1=0\\x-2018=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=2018\end{cases}}\)

Vậy x=1/4 hoặc x=2018

17 tháng 10 2020

a ) xy + 1 - x - y

= x ( y - 1 ) + 1 - y

= x ( y - 1 ) - ( y - 1 )

= ( x - 1 ) ( y - 1 )

b ) x2 + ab + ac + bx

= ( b + x )x + a( b + c )

= ( b + x )1x + 1a( b + c )

= ( b + x ) ( x + a ) ( b + c )

c ) ax + bx - cx + a + b - c

= ( a + b - c )x + a + b - c

= ( a + b - c )x + ( a + b - c )1

= ( a + b - c ) ( x + 1 )

17 tháng 10 2020

Gọi I là giao điểm của BC và MD

Vì MBDC là hình bình hành 

\(\Rightarrow IB=IC\)

Gọi K là giao điểm của AD và ME

Vì MAED là hình bình hành 

\(\Rightarrow KD=KA\)

Xét \(\Delta AMD\)có MK và AI là các đường trung tuyến

=> G là trọng tâm của \(\Delta AMD\)( G là giao điểm của MK và AI )

\(\Rightarrow GI=\frac{1}{3}AI\)

=> AI là đường trung tuyến của tam giác ABC 

Mà \(GI=\frac{1}{3}AI\)

Nên G là trong tâm của tam giác ABC

=> G là điểm cố định

Vậy khi M di động thì đương thẳng ME luôn đi qua  điểm G cố định

17 tháng 10 2020

A B C M D E I G K