tìm các giá trị nguyên của x để: p=(3x-2)/(2x+1) có giá trị nguyên
Helpppppppppppppppppp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{y}{3}-5\right)^{2000}=\left(\frac{y}{3}-5\right)^{2008}\)
\(\frac{y}{3}-5=0\) hoặc \(\frac{y}{3}-5=1\) hoặc \(\frac{y}{3}-5=-1\)
\(\frac{y}{3}=5\) hoặc \(\frac{y}{3}=6\) hoặc \(\frac{y}{3}=4\)
y=15 hoặc y=18 hoặc y=12
(\(\frac{y}{3}\) - 5)\(^{2000}\) = (\(\frac{y}{3}\) - 5)\(^{2008}\)
(\(\frac{y}{3}\) - 5)\(^{2000}\) - (\(\frac{y}{3}\) - 5)\(^{2008}\) = 0
(\(\frac{y}{3}\) - 5)\(^{2000}\).[1 - (\(\frac{y}{3}\) - 5)\(^8\)] = 0
\(\left[\begin{array}{l}\frac{y}{3}-5=0\\ \frac{y}{3}-5=\pm1\end{array}\right.\)
\(\left[\begin{array}{l}y=5\times3\\ y=\left(1+5\right)\times3\\ y=\left(-1+5\right)\times3\end{array}\right.\)
\(\left[\begin{array}{l}y=15\\ y=18\\ y=12\end{array}\right.\)
Vậy y ∈ {12; 15; 18}
Cần 1.9=9 chữ số để đánh số các ghế từ 1 tới 9
Cần 2.(99-10+1)=180 chữ số để đánh số các ghế từ 10 tới 99
Cần 3.(980-100+1)=2643 chữ số để đánh số các ghế từ 100 tới 980
Vậy cần tộng cộng số chữ số là:
9+180+2643=2832
a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn
a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn
Ta có: \(\left(\frac34x-0,5\right)^3=-\frac{125}{8}\)
=>\(\left(\frac34x-\frac12\right)^3=\left(-\frac52\right)^3\)
=>\(3x-\frac12=-\frac52\)
=>\(3x=-\frac52+\frac12=-\frac42=-2\)
=>\(x=-\frac23\)
a: ta có: \(\hat{xAB}+\hat{yBA}=45^0+135^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên Ax//By
b: Gọi BM là tia đối của tia By
Khi đó, ta có: \(\hat{MBA}+\hat{yBA}=180^0\) (hai góc kề bù)
=>\(\hat{MBA}=180^0-135^0=45^0\)
Ta có: tia BM nằm giữa hai tia BA và BC
=>\(\hat{ABM}+\hat{CBM}=\hat{ABC}\)
=>\(\hat{CBM}=75^0-45^0=30^0\)
Ta có: \(\hat{MBC}=\hat{BCz}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên By//Cz
a: Ta có: \(\hat{CAD}=\hat{ADE}\left(=55^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//DE
b: ta có: \(\hat{AFB}=\hat{ADC}\left(=45^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên BE//CD
a: Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\left|y-2\right|\ge0\forall y\)
Do đó: \(\left|x+2\right|+\left|y-2\right|\ge0\forall x,y\)
=>\(-\left|x+2\right|-\left|y-2\right|\le0\forall x,y\)
=>\(A=-\left|x+2\right|-\left|y-2\right|+2024\le2024\forall x,y\)
Dấu '=' xảy ra khi \(\begin{cases}x+2=0\\ y-2=0\end{cases}\Rightarrow\begin{cases}x=-2\\ y=2\end{cases}\)
b: Ta có: \(\left|2x+5\right|\ge0\forall x\)
=>\(\left|2x+5\right|+2024\ge2024\forall x\)
=>\(B=\frac{2023}{\left|2x+5\right|+2024}\le\frac{2023}{2024}\forall x\)
Dấu '=' xảy ra khi 2x+5=0
=>2x=-5
=>\(x=-\frac52\)
Biểu thức \(A\) có chứa các giá trị tuyệt đối \(\mid x + 2 \mid\) và \(\mid y - 2 \mid\). Để \(A\) có giá trị lớn nhất, chúng ta cần làm sao cho các giá trị tuyệt đối này nhỏ nhất, bởi vì \(A\) là một hiệu và giá trị tuyệt đối luôn không âm. Do đó, \(A\) sẽ lớn nhất khi các biểu thức trong giá trị tuyệt đối đạt giá trị bằng 0.
Vậy, khi \(x = - 2\) và \(y = 2\), ta có:
\(A = 2024 - \mid x + 2 \mid - \mid y - 2 \mid = 2024 - 0 - 0 = 2024\)
Do đó, giá trị lớn nhất của \(A\) là 2024.
Biểu thức \(B\) có dạng tổng của hai phần, trong đó phần thứ nhất là \(\frac{2023}{\mid 2 x + 5 \mid}\) và phần thứ hai là một hằng số \(2024\). Để tìm giá trị lớn nhất của \(B\), chúng ta cần làm sao cho phần \(\frac{2023}{\mid 2 x + 5 \mid}\) đạt giá trị lớn nhất.
Vậy khi \(x = - \frac{5}{2}\), ta có:
\(B = \frac{2023}{\mid 2 x + 5 \mid} + 2024 = \frac{2023}{0} + 2024\)
Tuy nhiên, chia cho 0 là không xác định và không thể đạt được giá trị tại \(x = - \frac{5}{2}\). Vì vậy, ta không thể chọn \(x = - \frac{5}{2}\).
Tuy nhiên, khi \(\mid 2 x + 5 \mid\) càng lớn, phần \(\frac{2023}{\mid 2 x + 5 \mid}\) sẽ càng nhỏ, và ta muốn giá trị của \(\frac{2023}{\mid 2 x + 5 \mid}\) càng nhỏ thì \(B\) sẽ đạt giá trị tối thiểu. Giá trị lớn nhất của \(B\) sẽ đạt được khi \(\mid 2 x + 5 \mid\) đạt giá trị nhỏ nhất nhưng không bằng 0.
Do đó, giá trị lớn nhất có thể đạt được cho \(B\) khi \(2 x + 5\) càng gần 0.
P = \(\frac{3x-2}{2x+1}\)
P ∈ Z ⇔ (3\(x-2\) )⋮ (2\(x+1\))
[2.(3\(x\) - 2)] ⋮ (2\(x\) + 1)
[3.(2\(x\) + 1) - 7] ⋮ (2\(x\) + 1)
7 ⋮ (2\(x+1\))
(2\(x+1\)) ∈ Ư(7) = {-7; -1 ;1; 7}
Lập bảng ta có:
2\(x\) +1
-7
-1
1
7
-4
-1
0
3
\(x\in Z\)
tm
tm
tm
tm
Theo bảng trên ta có: \(x\in\) {-4; -1; 0; 3}
Vậy \(x\in\) {-4; -1; 0; 3}
ĐKXĐ: \(x<>-\frac12\)
Để p là số nguyên thì 3x-2⋮2x+1
=>6x-4⋮2x+1
=>6x+3-7⋮2x+1
=>-7⋮2x+1
=>2x+1∈{1;-1;7;-7}
=>2x∈{0;-2;6;-8}
=>x∈{0;-1;3;-4}