tìm x;y biết
x^2-y^2+2x-4y-10=0 với x:y nguyeen dương
cho 2 số a;b thoả mãn a+b=1. chuswngs minh a^3+b^3+ab\(\ge\)\(\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-\left(x+y\right)^2+3x^2-3y^2\)
\(=-x^2-2xy-y^2+3x^2-3y^2\)
\(=2x^2-2xy+4y^2\)
\(=2\left(x^2-xy+2y^2\right)\)
\(-\left(x+y\right)^2+3x^2-3y^2\)
\(=-\left(x^2+2xy+y^2\right)+3x^2-3y^2\)
\(=-x^2-2xy-y^2+3x^2-3y^2\)
\(=2x^2-2xy-4y^2\)
\(=2\left(x^2-xy-2y^2\right)\)
a) Xét hiệu ta có:
\(a^2+b^2+c^2-ab-bc-ca\)
\(=\frac{1}{2}.\left(2a^2+2b^2+2c^2-2ab-2bc-2ca\right)\)
\(=\frac{1}{2}.\left[\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\right]\)
\(=\frac{1}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\)
Vì \(\left(a-b\right)^2\ge0\forall a,b\); \(\left(b-c\right)^2\ge0\forall b,c\); \(\left(a-c\right)^2\ge0\forall a,c\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\forall a,b,c\)
\(\Rightarrow\frac{1}{2}.\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\right]\ge0\forall a,b,c\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=c\)
a,Ta có:\(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(a^2+c^2\ge2ca\)
Cộng theo từng vế ba bđt trên,ta được:
\(2\left(a^2+b^2+c^2\right)\ge2\left(ab+ac+bc\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac+bc\)
Dấu "="xảy ra khi a=b=c
b,\(a^3+b^3\ge ab\left(a+b\right)\)(chia cả 2 vế cho a+b)
\(\Leftrightarrow a^2-ab+b^2\ge ab\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)đúng với mọi a,b
Dấu"=" xảy ra khi a=b
c,\(a^2+b^2+c^2\ge a\left(b+c\right)\)
\(\Leftrightarrow a^2+b^2+c^2\ge ab+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac\ge0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+b^2+c^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-c\right)^2+b^2+c^2\ge0\)đúng với mọi a,b,c
Dấu"=" xảy ra khi a=b=c=0
Ta có\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)(x;y > 0)
=> \(\frac{x+y}{xy}=\frac{1}{3}\)
=> 3(x + y) = xy
=> 3x + 3y = xy
=> xy - 3x - 3y = 0
=> x(y - 3) - 3y + 9 = 9
=> x(y - 3) - 3(y - 3) = 9
=> (x - 3)(y - 3) = 9
Vì x;y > 0
=> x - 3 > -3 ; y - 3 > -3 (1)
mà 9 = 1.9 = (-1).(-9) = 3.3 = (-3).(-3) (2)
Từ (1)(2)
=> x - 3 = 1 ; y - 3 = 9
=> x = 4 ; y = 12
hoặc x = 12 ; y = 4
Vậy các cặp (x ; y) thỏa mãn là (4;12);(12;4)
Ta có \(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\)
\(\Leftrightarrow\frac{y}{xy}+\frac{x}{xy}=\frac{1}{3}\)
\(\Leftrightarrow\frac{x+y}{xy}=\frac{1}{3}\)
\(\Leftrightarrow3\left(x+y\right)=xy\)
\(\Leftrightarrow3x+3y-xy=0\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9\)
\(\Leftrightarrow\left(x-3\right)\left(y-3\right)=9=3.3=\left(-3\right).\left(-3\right)=1.9=9.1=\left(-1\right)\left(-9\right)=\left(-9\right)\left(-1\right)\)
\(th1\hept{\begin{cases}x-3=3\Leftrightarrow x=6\\y-3=3\Leftrightarrow y=6\end{cases}}\left(tm\right)\)
\(th2\hept{\begin{cases}x-3=-3\Leftrightarrow x=0\\y-3=-3\Leftrightarrow y=0\end{cases}}\left(ktm\right)\)
\(th3\hept{\begin{cases}x-3=1\Leftrightarrow x=4\\y-3=9\Leftrightarrow y=12\end{cases}}\left(tm\right)\)
\(th4\hept{\begin{cases}x-3=9\Leftrightarrow x=12\\y-3=1\Leftrightarrow y=4\end{cases}}\left(tm\right)\)
thử các cặp còn lại rồi kl
\(y^2+2\left(x^2+1\right)=2\left(x+1\right)\)
\(\Leftrightarrow y^2+2\left(x^2+x+1\right)=2\left(x+1\right)\)
\(\Leftrightarrow y^2+2x^2+2x+2=2x+2\)
\(\Leftrightarrow y^2+2x^2=0\)
Vì \(x^2\ge0;y^2\ge0\)
\(\Rightarrow y^2+2x^2\ge0\)
Mà \(y^2+2x^2=0\)
Nên \(\hept{\begin{cases}y^2=0\\2x^2=0\end{cases}}\)
Hay x = y = 0
Ta có (a + b + c)2 \(\ge0\forall a;b;c\inℝ\)
=> a2 + b2 + c2 + 2ab + 2bc + 2ca \(\ge\)0
=> a2 + b2 + c2 \(\ge\)0 - (2ab + 2bc + 2ca)
=> a2 + b2 + c2 \(\le\)2ab + 2bc + 2ca
=> a2 + b2 + c2 \(\le\)2(ab + bc + ca)
Dấu "=" xảy ra <=> a + b + c = 0
Xí bài 2 ý a) trước :>
4x2 + 2y2 + 2z2 - 4xy - 4xz + 2yz - 6y - 10z + 34 = 0
<=> ( 4x2 - 4xy + y2 - 4xz + 2yz + z2 ) + ( y2 - 6y + 9 ) + ( z2 - 10z + 25 ) = 0
<=> [ ( 4x2 - 4xy + y2 ) - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> [ ( 2x - y )2 - 2( 2x - y )z + z2 ] + ( y - 3 )2 + ( z - 5 )2 = 0
<=> ( 2x - y - z )2 + ( y - 3 )2 + ( z - 5 )2 = 0
Ta có : \(\hept{\begin{cases}\left(2x-y-z\right)^2\\\left(y-3\right)^2\\\left(z-5\right)^2\end{cases}}\ge0\forall x,y,z\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\)
Thế vào T ta được :
\(T=\left(4-4\right)^{2014}+\left(3-4\right)^{2014}+\left(5-4\right)^{2014}\)
\(T=0+1+1=2\)
(x2 + x)2 - 2(x2 + x) - 15
= [(x2 + x)2 - 2(x2 + x) + 1] - 16
= (x2 + x + 1)2 - 42
= (x2 + x + 5)(x2 + x - 3)
( x2 + x )2 - 2 ( x2 + x ) - 15
Đặt t = x2 + x , đa thức trở thành
t2 - 2t - 15
= ( t2 + 3t ) - ( 5t + 15 )
= t ( t + 3 ) - 5 ( t + 3 )
= ( t - 5 ) ( t + 3 )
= ( x2 + x - 5 ) ( x2 + x + 3 )
Bài 2 :
a, \(x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow x=0;4\)
b, \(5x\left(x-2020\right)-x+2020=0\)
\(\Leftrightarrow5x\left(x-2020\right)-\left(x-2020\right)=0\Leftrightarrow\left(5x-1\right)\left(x-2020\right)=0\)
\(\Leftrightarrow x=\frac{1}{5};2020\)
c, \(\left(4x+5\right)^2-\left(2x-1\right)^2=0\)
\(\Leftrightarrow16x^2+40x+25-\left(4x^2-4x+1\right)=0\)
\(\Leftrightarrow12x^2+44x+24=0\Leftrightarrow4\left(x+3\right)\left(3x+2\right)=0\)
\(\Leftrightarrow x=-3;-\frac{2}{3}\)
Bài 2:
Vì \(a+b=1\)\(\Rightarrow b=1-a\)
\(\Rightarrow a^3+b^3+ab=\left(a+b\right)\left(a^2-ab+b^2\right)+ab\)
\(=a^2-ab+b^2+ab=a^2+b^2\)
\(=a^2+\left(1-a\right)^2=a^2+1-2a+a^2\)
\(=2a^2-2a+1=2.\left(a^2-a+\frac{1}{4}\right)+\frac{1}{2}\)
\(=2.\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\)
Vì \(\left(a-\frac{1}{2}\right)^2\ge0\forall a\)\(\Rightarrow2\left(a-\frac{1}{2}\right)^2\ge0\forall a\)
\(\Rightarrow2\left(a-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall a\)
hay \(a^3+b^3+ab\ge\frac{1}{2}\)
Dấu " = " xảy ra \(\Leftrightarrow a-\frac{1}{2}=0\)\(\Leftrightarrow a=\frac{1}{2}\)
\(\Rightarrow b=1-\frac{1}{2}=\frac{1}{2}\)
1. x2 - y2 + 2x - 4y - 10 = 0
<=> ( x2 + 2x + 1 ) - ( y2 + 4y + 4 ) - 7 = 0
<=> ( x + 1 )2 + ( y + 2 )2 = 7
<=> ( x + 1 + y + 2 ) ( x + 1 - y - 2 ) = 7
<=> ( x + y + 3 ) ( x - y - 1 ) = 7
Vì x ; y nguyên dương nên : ( x + y + 3 ) ( x - y - 1 ) = 7 . 1
=>\(\orbr{\begin{cases}x+y=4\\x-y=2\end{cases}}\)=>\(\orbr{\begin{cases}x=3\\y=1\end{cases}}\)