A= 3+\(^{3^2+3^3+...+3^{100}}\)
B=\(3^{100}+3^{101}+...+3^{105}\)
Tính tổng nhen
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3 + 32 + 33 + ..+ 3100
=> 3A = 32 + 33 + 34 + ..+ 3101
=> 3A - A = ( 32 + 33 + 34 + 31101 )
=> - ( 3 + 32 + 33 + 3100 )
=> 2A = 3101 - 3
Màk 2A + 3 = 3n
=> 3101 - 3 + 3 = 3n
=> 3n = 3101
=> n = 101
Vậy...
^^ Học tốt!
Gọi ƯCLN( 2n+5, 3n+7) là d
Ta có :
2n+5 chia hết cho d
=> 3(2n+5) chia hết cho d
<=> 6n+15 chia hết cho d (1)
3n+7 chia hết cho d
=> 2(3n+7) chia hết cho d
<=> 6n+14 chia hết cho d (2)
=> (6n+15) - ( 6n+14) chia hết cho d hay 1 chia hết cho d
--> 2n+5, 3n+7 nguyên tố cùng nhau (đpcm)
Cách tìm ước chung lớn nhất:
Muốn tìm ƯCLN của hai hay nhiều số, ta thực hiện ba bước sau:
Bước 1: Phân tích mỗi thừa số ra thừa số nguyên tố.
Bước 2: Chọn ra các thừa số nguyên tố chung.
Bước 3: Lập tích các thừa số chọn, mỗi thừa số lấy với số mũ nhỏ nhất của nó. Tích đó là ƯCLN phải tìm.
Phân tích thành thừa số nguyên tố rồi từ đó lấy các thừa số chung với mũ lớn nhất là tìm được UCLN nha bạn
Tìm a,b thuộc N biết:
a+b=144 và ƯCLN (a, b)=48
Bạn nào biết làm rõ ràng dùm mình nha, cảm ơn mấy bạn!
Vì ƯCLN(a,b) = 48 nên a = 48m , b = 48n , ƯCLN(m,n) = 1
Ta có: a + b = 144
=> 48m + 48n = 144
=> 48(m + n) = 144
=> m + n = 144 : 48 = 3
Giả sử m > n
Mà ƯCLN(m,n) = 1 nên ta có bảng:
m | 2 |
n | 1 |
Suy ra
a | 96 |
b | 48 |
Vậy...
Ta có : UCLN ( a , b ) = 48
=> a = 48 . h ; b = 48 . k với ucln ( h ,k ) = 1
Mà a + b = 144 nên 48 . h + 48 . k = 144
=> 48 . ( h + k ) = 144
=> h + k = 144 : 48 Vì a , b thuộc N => h + k = 3 = 0 + 3 = 1 + 2
=> 144 = a + b = 0 + 144 = 144 + 0 = 48 + 96 = 96 + 48
Gọi d là ƯCLN ( 14n + 3 và 21n + 4).
14n + 3 \(⋮\)d\(\Rightarrow\)42n + 9\(⋮\)d
21n + 4\(⋮\)d\(\Rightarrow\)42n + 8\(⋮\)d
\(\Rightarrow\)( 42n + 9) - ( 42n+ 8) = 42n + 9 -42 n -8
= 42n -42n + 9-8 = 1 \(⋮\)d
\(\Rightarrow\)d\(\in\)Ư (1) = 1
Vậy ƯCLN ( 14n +3 và 21n + 4) = 1
Ta có : A = 3 + 32 + 33 + ..... + 3100
=> 3A = 32 + 33 + ..... + 3101
=> 3A - A = 3101 - 3
=> 2A = 3101 - 3
=> A = \(\frac{3^{101}-3}{2}\)
a) \(A=3+3^2+3^3+...+3^{100}\)
\(\Leftrightarrow3A=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3A-A=3^2+3^3+3^4+...+3^{101}-\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Leftrightarrow2A=3^{101}-3\)
\(\Leftrightarrow A=\frac{3^{101}-3}{2}\)
b) Làm tương tự, đáp số là \(B=\frac{3^{106}-3^{100}}{2}\)