Cho E=\(\frac{x^3-3^2-7x-15}{x^5-x^4-10x^3-38x^2-51x-45}\)
Rút gọn E và tìm x để E đạt GTLN và tính GTLN đó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Q=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=\frac{c+a+b}{abc}=1\)
Ta có
\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)
\(\Rightarrow3^2=P+2.Q=P+2\Rightarrow P=7\)
\(A=\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{1+x+1-x}{\left(1+x\right)\left(1-x\right)}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{2}{1-x^2}+\frac{2}{1+x^2}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{4}{1-x^4}+\frac{4}{1+x^4}+\frac{8}{1+x^8}\)
\(A=\frac{8}{1-x^8}+\frac{8}{1+x^8}\)
\(A=\frac{16}{1-x^{16}}\)
\(A=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)
\(A=\frac{a^2}{\left(b+c\right)^2-b^2-c^2}+\frac{b^2}{\left(a+c\right)^2-c^2-a^2}+\frac{c^2}{\left(a+b\right)^2-a^2-b^2}\)
\(A=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\)
\(A=\frac{a^3+b^3+c^3}{2abc}\)
\(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)+3abc}{2abc}\)
\(A=\frac{3abc}{2abc}=\frac{3}{2}\)
a, \(x-1-\frac{x^2-4}{x+1}=x-1-\frac{\left(x-2\right)\left(x+2\right)}{x+1}\)
\(=\frac{\left(x-1\right)\left(x+1\right)}{x+1}-\frac{\left(x-2\right)\left(x+2\right)}{x+1}=\frac{x^2-1-x^2+4}{x+1}=\frac{3}{x+1}\)
c, \(\frac{2x^2+1}{x^3+1}-\frac{x-1}{x^2-x+1}-\frac{1}{x+1}\)
\(=\frac{2x^2+1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\frac{2x^2+1-x^2+1-x^2+x-1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{1}{\left(x+1\right)\left(x^2-x+1\right)}\)