Ông B có một miếng gỗ hình chữ nhật ABCD có chiều dài là 1.2m, chiều rộng là 0,5m. Ông B muốn cắt miếng gỗ thành 2 phần để Diện tích ABCE gấp 2 lần diện tích ADE.Tính độ dài DE.
Làm cho em gấp ạ! EM cảm ơn nhiều lắm ạ! Mãi iuuu mn <3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a + b + c = 0 , ta có :
\(A=\frac{ab}{a^2+b^2-c^2}\)\(+\frac{bc}{b^2+c^2-a^2}\)\(+\frac{ca}{c^2+a^2-b^2}\)
\(\Leftrightarrow\frac{ab}{\left(a+b\right)^2-2ab-c^2}\)\(+\frac{bc}{\left(b+c\right)^2-2ab-a^2}\)\(+\frac{ca}{\left(c+a\right)^2-2ca-b^2}\)
\(\Leftrightarrow A=\frac{ab}{\left(a+b+c\right)\left(a+b-c\right)-2ab}\)\(+\frac{bc}{\left(b+c-a\right)\left(b+c+a\right)-2ab}\)\(+\frac{ac}{\left(a+c+b\right)\left(c+a-b\right)-2ca}\)
\(\Leftrightarrow A=\frac{ab}{-2ab}\)\(+\frac{bc}{-2bc}\)\(+\frac{ac}{-2ac}\)
\(\Leftrightarrow A=\frac{-1}{2}\)\(+\frac{-1}{2}\)\(+\frac{-1}{2}\)
\(\Leftrightarrow A=\frac{-3}{2}\)
Trả lời :
*Tự vẽ hình.
a, +) Do ABDE là hình vuông (gt) => AE = AB
+) Do ACFH là hình vuông (gt) => AC = AH (tính chất)
+) \(\widehat{HAB}=\widehat{BAC}=90^o\)mà \(\widehat{HAB}+\widehat{BAC}=\widehat{BAH}\);\(\widehat{EAB}+\widehat{BAC}=\widehat{EAC}\)
=> \(\widehat{BAH}=\widehat{EAC}\)
Xét \(\Delta EAC\)và\(\Delta BAH\)có : AE = AB (cmt) ; AC = AH (cmt) ; \(\widehat{BAH}=\widehat{EAC}\)(cmt)
=> \(\Delta EAC\)=\(\Delta BAH\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow\left(x^3+8\right)-\left(x^3+2x\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow-2x+8=15\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=-\frac{7}{2}\)
Gọi M , B là trung điểm của DE , EF
a) Xét hai tam giác vuông \(\Delta AEM\)và \(\Delta ADM\)có :
AM chung ; EM = DM
=> \(\Delta AEM=\Delta ADM\)( hai cạnh góc vuông )
=> AE = AD và \(\widehat{A2}\)\(=\widehat{A1}\)(1)
Chứng minh tương tự , ta có : AE = AF và \(\widehat{A4}\)\(=\widehat{A3}\)(2)
Từ (1) , (2) suy ra :
AE = AD = AF và \(\widehat{A1}+\widehat{A2}+\widehat{A3}+\widehat{A4}=2.\left(\widehat{A2}+\widehat{A3}\right)=2.90^O=180^O\)
=> AD = AF và D,A,F thẳng hàng
=> D và F đối xứng nhau qua A ( đpcm )
b) F đối xứng với E qua N => EN\(\perp\)AC , tương tự EM\(\perp\)EN
=> AMEN là hình chữ nhật => EM\(\perp\)EN
=>\(\Delta DEF\)là tam giác vuông tại E
c) Xét \(\Delta ABD\)và \(\Delta ABE\)ta có :
AB chung ; AD = AE ; \(\widehat{A1}=\widehat{A2}\)
=> \(\Delta ABD=\Delta ABE\)( c.g.c ) => BD = BE
Tương tự ta chứng minh được CE = CF
Suy ra : BD + CF = BE + CE = BC ( đpcm )
d) EN \(||\)AB => \(\widehat{E1}=\widehat{B1}\)mà \(\widehat{B1}=\widehat{B2}\) ( do \(\Delta ABD=\Delta ABE\)) và \(\widehat{E1}=\widehat{F1}\)
=> \(\widehat{B2}=\widehat{F1}\)
Lại có AB \(||\)EF => BD \(||\)CF
=> BDFC là hình thang ( CF , BD là hai cạnh đáy )
e) Để BDCF là hình bình hành thì CF = BD mà CF = CE ; BD = BE
=> CE = BE <=> E là trung điểm của BC
f) Để BDFC là hình chữ nhật thì BD\(\perp\)BC mà \(\widehat{B2}=\widehat{B1}\)
=> \(\widehat{B2}=\widehat{B1}=45^O\Rightarrow\Delta ABC\)vuông cân ở A
Đồng thời kết hợp với điều kiện để BDFC là hình bình hành tức E là trung điểm của BC
Khi đó BDFC sẽ là hình chữ nhật