\(2x+\sqrt{x+2}=4+2\sqrt{x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) y=(m-1)x+m+3 (d1) (a=m-1;b=m+3)
y=-2x+1 (d2) (a' =-2;b' =1)
vì hàm số (d1) song song với hàm số (d2) nên
\(\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-1=-2\\m+3\ne1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne-2\end{cases}}\)
vậy với m= -1 thì hàm số (d1) song song với hàm số (d2)
b) vì hàm số (d1) đi qua điểm (1;-4) nên
x=1 ; y= -4
thay vào (d1) ta có
-4=m-1+m+3 (mình làm tắt ko nhân với 1 nha)
-4=2m+2
-2=2m
m=-1
Thể tích của chiếc bồn là:
1,8 x ( 0,6 x 0,6 x 3,14 ) = 2,03472 ( m^3)
Bồn đó chứa được số lí dầu là:
2,03472 x 1000 = 2034,72 ( lít )
Đáp số....
M A B O D H C
Gọi H là giao điểm của MO và AB => H cố định
Ta có: \(MA^2=MH.MO\)( hệ thức lượng trong tam giác vuông)
và \(MA^2=MC.MD\)
=> \(MH.MO=MC.MD\)
=> \(\frac{MH}{MD}=\frac{MC}{MO}\)
=> Dễ dàng chứng minh được: \(\Delta\)MCH ~ \(\Delta\)MOD
=> ^MOD = ^MCH
=> ^COD = ^MCH mà ^MCH + ^HCD = 180 độ
=> ^COD + ^HCD = 180 độ
=> CHOD nội tiếp
=> đường tròn ngoại tiếp \(\Delta\)COD luôn qua điểm H cố định
1. Sử dụng svacxo
hoặc bạn dùng hệ quả của cauchy
2. Lần sau bạn đừng gửi ảnh. Nó sẽ không hiện đâu
Chứng minh: \(a^2+b^2+c^2-1\le\frac{2\left(a^2+b^2+c^2\right)}{ab+bc+ac}\) (1)
với a, b , c dương và a + b + c = 3
Ta có: \(a^2+b^2+c^2=\left(a+b+c\right)^2-2\left(ab+bc+ac\right)=9-2t\)
Với \(t=ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=3\)
Ta cần chứng minh: \(9-2t-1\le\frac{2\left(9-2t\right)}{t}\)(2)
<=> \(t^2-6t+9\ge0\)
<=> \(\left(t-3\right)^2\ge0\) luôn đúng
=> (2) đúng
=> (1) đúng
Dấu "=" xảy ra <=> t = 3 <=> a + b + c = 1 và ab + bc + ac = 3 <=> a = b = c = 1
\(ĐK:x\ge1\)
\(2x+\sqrt{x+2}=4+2\sqrt{x-1}\)
\(\Leftrightarrow\left(2x-4\right)+\left(\sqrt{x+2}-2\sqrt{x-1}\right)=0\)
\(\Leftrightarrow2\left(x-2\right)+\frac{-3\left(x-2\right)}{\sqrt{x+2}+2\sqrt{x-1}}=0\)
\(\Leftrightarrow\left(x-2\right)\left(2+\frac{-3}{\sqrt{x+2}+2\sqrt{x-1}}\right)=0\)
\(TH1:x-2=0\Leftrightarrow x=2\)
\(TH2:2=\frac{3}{\sqrt{x+2}+2\sqrt{x-1}}\)(*)
Mà ta có: \(\sqrt{x+2}+2\sqrt{x-1}\ge\sqrt{1+2}+0=\sqrt{3}\)
\(\Rightarrow\frac{3}{\sqrt{x+2}+2\sqrt{x-1}}\le\sqrt{3}< 2\)
Như vậy, (*) vô nghiệm
Vậy phương trình có một nghiệm duy nhất là 2.