K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(x^2-3x+1>2\left(x-1\right)-x\left(3-x\right)\)

=>\(x^2-3x+1>2x-2-3x+x^2\)

=>-3x+1>-x-2

=>-2x>-3

=>\(x< \dfrac{3}{2}\)

b: \(\left(x-1\right)^2+x^2< =\left(x+1\right)^2+\left(x+2\right)^2\)

=>\(x^2-2x+1+x^2< =x^2+2x+1+x^2+4x+4\)

=>-2x+1<=6x+5

=>-7x<=4

=>\(x>=-\dfrac{4}{7}\)

c: 

\(\left(x^2+1\right)\left(x-6\right)< =\left(x-2\right)^3\)

=>\(x^3-6x^2+x-6< =x^3-6x^2+12x-8\)

=>x-6<=12x-8

=>-11x<=-8+6=-2

=>\(x>=\dfrac{2}{11}\)

\(y:\dfrac{1}{16}-y:0,25-12\cdot y:6=41,5\)

=>\(16y-4y-2y=41,5\)

=>10y=41,5

=>\(y=\dfrac{41.5}{10}=4,15\)

ĐKXĐ: \(x\ne1\)

c: Để A>1 thì \(A-1>0\)

=>\(\dfrac{x^2-x+1}{x-1}-1>0\)

=>\(\dfrac{x^2-x+1-x+1}{x-1}>0\)

=>\(\dfrac{x^2-2x+2}{x-1}>0\)

mà \(x^2-2x+2=\left(x-1\right)^2+1>=1>0\forall x\)

nên x-1>0

=>x>1

d: Để A nguyên thì \(x^2-x+1⋮x-1\)

=>\(x\left(x-1\right)+1⋮x-1\)

=>\(1⋮x-1\)

=>\(x-1\in\left\{1;-1\right\}\)

=>\(x\in\left\{2;0\right\}\)

7 tháng 8

Để giải các bài toán liên quan đến hàm số \[ A = \frac{x^2 - x + 1}{x - 1}, \] ta cần phân tích hàm số này.

### 1. Tìm điều kiện để \( A > 1 \)

Để tìm các giá trị của \( x \) sao cho \( A > 1 \), ta sẽ làm theo các bước sau:

1. **Biến đổi hàm số**:
   \[
   A = \frac{x^2 - x + 1}{x - 1}
   \]

   Ta phân tích phân thức này bằng cách chia \( x^2 - x + 1 \) cho \( x - 1 \) bằng phép chia đa thức:

   **Chia \( x^2 - x + 1 \) cho \( x - 1 \):**

   - Chia \( x^2 \) cho \( x \) được \( x \).
   - Nhân \( x \) với \( x - 1 \) được \( x^2 - x \).
   - Trừ \( x^2 - x \) khỏi \( x^2 - x + 1 \) ta còn dư \( 1 \).

   Vậy,
   \[
   \frac{x^2 - x + 1}{x - 1} = x + \frac{2}{x - 1}
   \]

2. **Đặt điều kiện \( A > 1 \)**:
   \[
   x + \frac{2}{x - 1} > 1
   \]

   - Trừ 1 từ cả hai vế:
     \[
     x + \frac{2}{x - 1} - 1 > 0
     \]

   - Kết hợp các hạng tử:
     \[
     x - 1 + \frac{2}{x - 1} > 0
     \]

   - Đặt \( t = x - 1 \), ta có:
     \[
     t + \frac{2}{t} > 0
     \]

   - Phân tích bất phương trình:
     \[
     t^2 + 2 > 0
     \]

   Vì \( t^2 + 2 \) luôn dương (bất kể giá trị của \( t \)), bất phương trình luôn đúng với mọi giá trị của \( t \neq 0 \). Do đó, điều kiện để \( A > 1 \) là \( x \neq 1 \).

### 2. Tìm giá trị nguyên của \( x \) sao cho \( A \) là số nguyên

1. **Biến đổi hàm số**:
   \[
   A = x + \frac{2}{x - 1}
   \]

   Để \( A \) là số nguyên, thì \(\frac{2}{x - 1}\) phải là số nguyên. Điều này có nghĩa là \( x - 1 \) phải là một ước của 2.

2. **Tìm các ước của 2**:
   - Các ước của 2 là \( \pm 1, \pm 2 \).

3. **Tìm các giá trị tương ứng của \( x \)**:
   - Nếu \( x - 1 = 1 \), thì \( x = 2 \).
   - Nếu \( x - 1 = -1 \), thì \( x = 0 \).
   - Nếu \( x - 1 = 2 \), thì \( x = 3 \).
   - Nếu \( x - 1 = -2 \), thì \( x = -1 \).

4. **Kiểm tra các giá trị**:

   - Với \( x = 2 \):
     \[
     A = \frac{2^2 - 2 + 1}{2 - 1} = \frac{3}{1} = 3
     \]

   - Với \( x = 0 \):
     \[
     A = \frac{0^2 - 0 + 1}{0 - 1} = \frac{1}{-1} = -1
     \]

   - Với \( x = 3 \):
     \[
     A = \frac{3^2 - 3 + 1}{3 - 1} = \frac{7}{2} = 3.5
     \]
     (Không phải là số nguyên)

   - Với \( x = -1 \):
     \[
     A = \frac{(-1)^2 - (-1) + 1}{-1 - 1} = \frac{3}{-2} = -1.5
     \]
     (Không phải là số nguyên)

### Kết quả:

- **Điều kiện để \( A > 1 \)** là \( x \neq 1 \).
- **Các giá trị nguyên của \( x \) để \( A \) là số nguyên** là \( x = 0 \) và \( x = 2 \).

Vì \(\dfrac{1}{3}\ne\dfrac{2}{2}\)

nên hệ luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}x+2y=7\\3x+2y=2m+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x+2y-x-2y=2m+1-7\\x+2y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=2m-6\\2y=7-x\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m-3\\2y=7-m+3=-m+10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=m-3\\y=-0,5m+5\end{matrix}\right.\)

x+2=y

=>-0,5m+5=m-3+2=m-1

=>-1,5m=-6

=>m=4

Số hạng thứ 24 là 315+23x5=430

Tổng của dãy số là \(\left(430+315\right)\times\dfrac{24}{2}=8940\)

3: \(564\left(\dfrac{12+\dfrac{12}{7}-\dfrac{12}{25}-\dfrac{12}{71}}{4+\dfrac{4}{7}-\dfrac{4}{25}-\dfrac{4}{71}}:\dfrac{3+\dfrac{3}{13}+\dfrac{3}{19}+\dfrac{3}{101}}{5+\dfrac{5}{13}+\dfrac{5}{19}+\dfrac{5}{101}}\right)\)

\(=564\left(\dfrac{12\left(1+\dfrac{1}{7}-\dfrac{1}{25}-\dfrac{1}{71}\right)}{4\left(1+\dfrac{1}{7}-\dfrac{1}{25}-\dfrac{1}{71}\right)}:\dfrac{3\left(1+\dfrac{1}{13}+\dfrac{1}{19}+\dfrac{1}{101}\right)}{5\left(1+\dfrac{1}{13}+\dfrac{1}{19}+\dfrac{1}{101}\right)}\right)\)

\(=564:\left(3\cdot\dfrac{5}{3}\right)=564\cdot5=2820\)

4: \(\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{402-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}+\dfrac{\dfrac{3}{5}+\dfrac{3}{13}-0,9}{\dfrac{7}{91}+0,2-\dfrac{3}{10}}\)

\(=\dfrac{5\left(31-\dfrac{2}{7}-\dfrac{1}{11}+\dfrac{1}{23}\right)}{13\left(31-\dfrac{2}{7}-\dfrac{1}{11}+\dfrac{1}{23}\right)}+\dfrac{\dfrac{3}{5}+\dfrac{3}{13}-\dfrac{9}{10}}{\dfrac{1}{13}+\dfrac{1}{5}-\dfrac{1}{10}}\)

\(=\dfrac{5}{13}+\dfrac{3\left(\dfrac{1}{5}+\dfrac{1}{13}-\dfrac{1}{10}\right)}{\dfrac{1}{5}+\dfrac{1}{13}-\dfrac{1}{10}}=\dfrac{5}{13}+3=\dfrac{44}{13}\)

5: \(\dfrac{0,375-0,3+\dfrac{3}{11}+\dfrac{3}{12}}{-0,625+0,5-\dfrac{5}{11}-\dfrac{5}{12}}+\dfrac{1,5+1-0,75}{2,5+\dfrac{5}{3}-1,25}\)

\(=-\dfrac{\dfrac{3}{8}-\dfrac{3}{10}+\dfrac{3}{11}+\dfrac{3}{12}}{\dfrac{5}{8}-\dfrac{5}{10}+\dfrac{5}{11}+\dfrac{5}{12}}+\dfrac{\dfrac{3}{2}+\dfrac{3}{3}-\dfrac{3}{4}}{\dfrac{5}{2}+\dfrac{5}{3}-\dfrac{5}{4}}\)

\(=-\dfrac{3\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}{5\left(\dfrac{1}{8}-\dfrac{1}{10}+\dfrac{1}{11}+\dfrac{1}{12}\right)}+\dfrac{3\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}{5\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}\right)}\)

\(=-\dfrac{3}{5}+\dfrac{3}{5}=0\)

9 tháng 8

Sửa đề: 

`x^2 + x + x + 1`

`= (x^2 + x) + (x+1) `

`= x(x+1) + (x+1) `

`= (x+1)(x+1)`

`x^4 +x + x + 1`

`= (x^4 + x) + (x+1) `

`= x(x^3 + 1) + (x+1) `

`= x(x+1)(x^2 - x +1) + (x+1) `

`= (x+1) (x^3 - x^2 + x) + (x+1) `

`= (x+1) (x^3 - x^2 + x+1) `

 

a: \(\dfrac{3x+5}{2}-x>=1+\dfrac{x+2}{3}\)

=>\(\dfrac{3x+5-2x}{2}>=\dfrac{3+x+2}{3}\)

=>\(\dfrac{x+5}{2}-\dfrac{x+5}{3}>=0\)

=>\(\dfrac{3\left(x+5\right)-2\left(x+5\right)}{6}>=0\)

=>\(\dfrac{x+5}{6}>=0\)

=>x+5>=0

=>x>=-5

b: \(\dfrac{x-2}{3}-x-2< =\dfrac{x-17}{2}\)

=>\(\dfrac{2\left(x-2\right)}{6}+\dfrac{6\left(-x-2\right)}{6}< =\dfrac{3\left(x-17\right)}{6}\)

=>\(2\left(x-2\right)+6\left(-x-2\right)< =3\left(x-17\right)\)

=>\(2x-4-6x-12< =3x-51\)

=>-4x-16<=3x-51

=>-7x<=-35

=>x>=5

c: \(\dfrac{2x+1}{3}-\dfrac{x-4}{4}< =\dfrac{3x+1}{6}-\dfrac{x-4}{12}\)

=>\(\dfrac{4\left(2x+1\right)-3\left(x-4\right)}{12}< =\dfrac{2\left(3x+1\right)-x+4}{12}\)

=>4(2x+1)-3(x-4)<=2(3x+1)-x+4

=>8x+4-3x+12<=6x+2-x+4

=>5x+16<=5x+6

=>16<=6(sai)

Vậy: BPT vô nghiệm

a: \(\dfrac{3\left(2x+1\right)}{20}+1>\dfrac{3x+52}{10}\)

=>\(\dfrac{6x+3}{20}+\dfrac{20}{20}>\dfrac{6x+104}{20}\)

=>6x+23>6x+104

=>23>104(sai)

vậy: \(x\in\varnothing\)

b: \(\dfrac{4x-1}{2}+\dfrac{6x-19}{6}< =\dfrac{9x-11}{3}\)

=>\(\dfrac{3\left(4x-1\right)+6x-19}{6}< =\dfrac{2\left(9x-11\right)}{6}\)

=>12x-3+6x-19<=18x-22

=>-22<=-22(luôn đúng)

Vậy: \(x\in R\)