cho x, y là hai số thực thỏa mãn x+y=1. Tìm giá trị nhỏ nhất của \(x^3+y^3+xy\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(x^2+x+1=\left(x^2+2\times\frac{1}{2}\times x+\frac{1}{4}\right)+1-\frac{1}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\Rightarrow x^2+x+1>0\)
Mà \(\left(x^2+x+1\right)\left(6-2x\right)=0\)
\(\Leftrightarrow6-2x=0\)
\(\Leftrightarrow x=3\)
Vậy ....................
Ta có : \(\left(x^2+x+1\right)\left(6-2x\right)=0\)
Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\ne0\forall x\)
\(\Rightarrow6-2x=0\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
\(x\left(x-1\right)\left(x^2-x+1\right)-6=0\)
\(\Leftrightarrow\left(x^2-x\right)\left(x^2-x+1\right)-6=0\)
Đặt \(x^2-x=t\)
\(\Leftrightarrow t\left(t+1\right)-6=0\)
\(\Leftrightarrow t^2+t-6=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+3\right)=0\)
\(\Leftrightarrow\left(x^2-x-2\right)\left(x^2-x+3\ne0\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=2orx=-1\)
Vậy tập nghiệm của phương trình là S = { -1 ; 2 }
x( x - 1 )( x2 - x + 1 ) - 6 = 0
<=> ( x2 - x )( x2 - x + 1 ) - 6 = 0
Đặt t = x2 - x
pt <=> t( t + 1 ) - 6 = 0
<=> t2 + t - 6 = 0
<=> t2 - 2t + 3t - 6 = 0
<=> t( t - 2 ) + 3( t - 2 ) = 0
<=> ( t - 2 )( t + 3 ) = 0
<=> ( x2 - x - 2 )( x2 - x + 3 ) = 0
<=> ( x2 - 2x + x - 2 )( x2 - x + 3 ) = 0
<=> [ x( x - 2 ) + ( x - 2 ) ]( x2 - x + 3 ) = 0
<=> ( x - 2 )( x + 1 )( x2 - x + 3 ) = 0
Vì x2 - x + 3 > 0 ( bạn tự cm vì lười quá @@ )
=> ( x - 2 )( x + 1 ) = 0
<=> x = 2 hoặc x = -1
Vậy ...
\(a^3-a^2b+ab^2-6b^3=0\)
\(\Leftrightarrow\left(a^3-a^2b\right)+\left(a^2b-ab^2\right)+\left(3ab^2-6b^3\right)=0\)
\(\Leftrightarrow a^2\left(a-2b\right)+ab\left(a-2b\right)+3b^2\left(a-2b\right)=0\)
\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)
Vì \(a>b>0\Rightarrow a^2+ab+3b^2>0\)nên từ (1) ta có \(a-2b=0\Leftrightarrow a=2b\)
Giá trị biểu thức \(P=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)
Từ \(x=by+cz\)\(\Rightarrow by=x-cz\)
\(\Rightarrow b=\frac{x-cz}{y}\)
\(\Rightarrow1+b=\frac{x+y-cz}{y}=\frac{ax+by+2cz-cz}{y}\)
\(=\frac{ax+by+cz}{y}=\frac{\frac{x+y+z}{2}}{y}=\frac{x+y+z}{2y}\)
Chứng minh tương tự , ta được :
\(1+a=\frac{x+y+z}{2x}\)
\(1+c=\frac{x+y+z}{2z}\)
\(\Rightarrow Q=\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\)
\(=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)
\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}\)
\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Vậy \(Q=2\)
Ta có: \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x.\left(x+1\right)}=1\frac{1993}{1995}\) ( ĐK: \(x\ne0,\)\(x\ne-1\))
\(\Leftrightarrow2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}\right)=1\frac{1993}{1995}\)
\(\Leftrightarrow2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{3988}{1995}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{1994}{1995}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{1995}\)
\(\Leftrightarrow x+1=1995\)
\(\Leftrightarrow x=1994\)\(\left(TM\right)\)
Vậy..........
Ta có: \(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)
\(\Leftrightarrow\left[\left(x^2+5x\right)^2+4\left(x^2+5x\right)\right]-\left[6\left(x^2+5x\right)+24\right]=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(x^2+5x+4\right)-6\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x^2+5x-6\right)\left(x^2+5x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+6\right)\left(x+1\right)\left(x+4\right)=0\)
\(\Rightarrow x\in\left\{-6;-4;-1;1\right\}\)
\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)=24\)
\(\Leftrightarrow\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
Đặt: \(x^2+5x=t\)
\(\Rightarrow t^2-2t-24=0\)
\(\Leftrightarrow t^2+4t-6t-24=0\)
\(\Leftrightarrow t\left(t+4\right)-6\left(t+4\right)=0\)
\(\Leftrightarrow\left(t+4\right)\left(t-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t+4=0\\t-6=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}t=-4\\t=6\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x^2+5x=-4\\x^2+5x=6\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2+5x+4=0\\x^2+5x-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1;x=-4\\x=1;x=-6\end{cases}}}\)
Vậy: \(S=\left\{-1;-4;1;-6\right\}\)
Đặt A = x3 + y3 + xy
= (x + y)(x2 - xy + y2) + xy
= x2 - xy + y2 + xy (Vì x + y = 1)
= x2 + y2
Lại có x +y = 1
=> x = 1 - y
Khi đó A = x2 + y2
= (1 - y)2 + y2
= 1 - 2y + y2 + y2
= 2y2 - 2y +1 = \(2\left(y^2-y+\frac{1}{2}\right)=2\left(y^2-2.\frac{1}{2}y+\frac{1}{4}+\frac{1}{4}\right)=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)
Dấu "=" xảy ra <=> \(y-\frac{1}{2}=0\Leftrightarrow y=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}\)
Vậy Min A = \(\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)