K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2021

a) Đặt n3 - n + 2 = k2

<=>    n(n2 -1) +2 = k2

<=>    (n-1)n(n+1) +2 = k2

Mà (n-1)n(n+1) là 3 STN liên tiếp => (n-1)n(n+1) chia hết cho 3 

Mà không có số chính phương nào chia 3 dư 2

=>  (n-1)n(n+1) +2 = k2 (vô lý)

Vậy n= {O}

3 tháng 2 2021

1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)

\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)

3 tháng 2 2021

2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)

\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)

\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)

Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)

Vậy x = -2 hoặc x = -4

\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)

\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)- \left(-x-1\right)\left(-2x-5\right)=0\)

\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=0\)

\(\Leftrightarrow\left(-x-1\right)\left(3x+12\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\x=-4\end{cases}}}\)

Vậy : Tập nghiệm của PT là S={-1;-4}

#H

\(\left(-x-1\right)\left(x+7\right)=\left(-x-1\right)\left(-2x-5\right)\)

\(\Leftrightarrow\left(-x-1\right)\left(x+7\right)-\left(-x-1\right)\left(-2x-5\right)=0\)

\(\Leftrightarrow\left(-x-1\right)\left[\left(x+7\right)-\left(-2x-5\right)\right]=0\)

\(\Leftrightarrow\left(-x-1\right)\left(x+7+2x+5\right)=\left(-x-1\right)\left(3x+12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x-1=0\\3x+12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}}\)

Vậy tập nghiệm của pt \(S=\left\{-1;-4\right\}\)

3 tháng 2 2021

Theo bài ra ta có : \(\left(m-1\right)\left(m-2\right)x=-m+2\)

\(\Leftrightarrow\left(m-1\right)\left(m-2\right)x=-\left(m-2\right)\)

\(\Leftrightarrow\left(m-1\right)\left(m-2\right)x+\left(m-2\right)=0\)

\(\Leftrightarrow\left(m-2\right)\left[\left(m-1\right)x+1\right]=0\)

a, Thay m = 1 vào phương trình trên : 

\(\Leftrightarrow-1.1=0\Leftrightarrow-1\ne0\)

Vậy phương  trình vô nghiệm 

b, Thay m = 2 vào phương trình trên : 

\(\Leftrightarrow0\left[\left(2-1\right)x+1\right]=0\Rightarrow0=0\)

c, Thay m = 0 vào phương trình trên : 

\(\Leftrightarrow-2\left[\left(0-1\right)x+1\right]=0\)

\(\Leftrightarrow-2\left(-x+1\right)=0\Leftrightarrow x=1\)

Vậy tập nghiệm của phương trình là S = { 1 }