K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

\(\sqrt{10+\sqrt{24}+\sqrt{40}+\sqrt{60}}=2005\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\Leftrightarrow\sqrt{10+2\sqrt{6}+2\sqrt{10}+2\sqrt{3\cdot5}}=2005\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2}+\sqrt{3}+\sqrt{5}\right)^2}=2005\left(2x-1\right)+\sqrt{2}+\sqrt{3}+\sqrt{5}\)

\(\Leftrightarrow2005\left(2x-1\right)=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

13 tháng 8 2020

Hải Ngọc nhầm 2006 thành 2005 rồi

13 tháng 8 2020

Mọi người giúp em với ạ

14 tháng 8 2020

 \(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\)

\(\Leftrightarrow5x^4+2x-2\sqrt{2x+1}+2=0\)

\(\Leftrightarrow5x^4+\left(2x+1-2\sqrt{2x+1}+1\right)=0\)

\(\Leftrightarrow5x^4+\left(\sqrt{2x+1}-1\right)^2=0\)

có \(\hept{\begin{cases}5x^4\ge0\\\left(\sqrt{2x+1}-1\right)^2\ge0\end{cases}}\)mà \(5x^4+\left(\sqrt{2x+1}-1\right)^2=0\Rightarrow\hept{\begin{cases}5x^4=0\\\left(\sqrt{2x+1}-1\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^4=0\\\sqrt{2x+1}=1\end{cases}\Leftrightarrow x=0}\)

vạy x=0 là nghiệm của phương trình

Cre: Đàm Hải Ngọc

20 tháng 9 2020

cái này dùng liên hợp dễ hơn 

\(x\left(5x^3+2\right)-2\left(\sqrt{2x+1}-1\right)=0\left(đk:x\ge-\frac{1}{2}\right)\)

\(< =>x\left(5x^3+2\right)-2.\frac{2x+1-1}{\sqrt{2x+1}+1}=0\)

\(< =>x\left(5x^3+2\right)-x.\frac{4}{\sqrt{2x+1}+1}=0\)

\(< =>x\left(5x^3+2-\frac{4}{\sqrt{2x+1}+1}\right)=0< =>x=0\)

giờ dùng đk đánh giá cái ngoặc to vô nghiệm là ok