Bài 1:
a, \(\sqrt{3x-2}=2-\sqrt{3}\)
b, \(\sqrt{x+1}=\sqrt{5}-3\)
Bài 2:
a,\(\sqrt{x^2-9}-3\sqrt{x-3}=0\)
b, \(\sqrt{x^2-4}-2\sqrt[]{x+2}=0\)
Bài 3:
\(x^2-5=0\)
Giúp tớ với các cậu oiii
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GTLN chứ ?
\(P\le\frac{1}{9}\left(\frac{1}{ax}+\frac{1}{by}+\frac{1}{cz}+\frac{1}{ay}+\frac{1}{bz}+\frac{1}{cx}+\frac{1}{az}+\frac{1}{bx}+\frac{1}{cy}\right)\)
\(=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
?
a/ Fe → FeCl2 → Fe(OH)2 → FeSO4 → Fe(NO3)2 → Fe2(SO4)3 → Fe(OH)3 → Fe2O3 → Fe → FeCl3
1. Fe + 2HCl → FeCl2 + H2
2. FeCl2 + Ba(OH)2 → Fe(OH)2 + BaCl2
3. Fe(OH)2 + H2SO4 → FeSO4 + 2H2O
4. FeSO4 + Ba(NO3)2 → Fe(NO3)2 + BaSO4
5. 6Fe(NO3)2 + 9H2SO4 → 3Fe2(SO4)3 + 4H2O + 10HNO3 + NO
6. Fe2(SO4)3 + 6NaOH → 2Fe(OH)3 + 3Na2SO4
7. 2Fe(OH)3 → (nhiệt độ) Fe2O3 + 3H2O
8. Fe2O3 + 3CO → (nhiệt độ) 2Fe + 3CO2
9. Fe + Cl2 → (nhiệt độ) FeCl3
Ta cóa : \(20x^6-\left(8-40y\right)x^3+25y^2-5\)
\(=20x^6-8x^3+40x^3y+25y^2-5\)
\(=16x^6+40x^3y+25y^2+4x^6-8x^3+4-9\)
\(=\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\)
Ta thấy ngay \(\left(4x^3+5y\right)^2\ge0;4\left(x^3-1\right)^2\ge0\)
\(\Rightarrow\left(4x^3+5y\right)^2+4\left(x^3-1\right)^2-9\ge-9\)
\(\Rightarrow M=\frac{6}{20x^6-\left(8-40y\right)x^3+25y^2-5}\le\frac{6}{-9}=-\frac{2}{3}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}4x^3+5y=0\\x^3-1=0\end{cases}\Leftrightarrow x=1;y=-\frac{4}{5}}\)
Ke \(MK\perp BC\Rightarrow MK=\frac{AH}{2}=\frac{BM}{2}\) (tinh chat duong trung binh)
Xet tam giac MBK co \(\frac{MK}{MB}=\frac{1}{2}\Rightarrow\widehat{MBK}=\widehat{MBC}=30^0\)
B A C
Ta có : \(\widehat{B}+\widehat{C}=90^o\) ( \(\Delta ABC\)vuông tại A )
\(45^o+\widehat{C}=90^o\)
\(\widehat{C}=90^o-45^o\)
\(\widehat{C}=45^o\)
Ta có : \(\widehat{B}=\widehat{C}=45^o\)
và \(\Delta ABC\)vuông tại A
\(\Rightarrow\Delta ABC\)vuông cân tại A
\(\Rightarrow AB=AC=5cm\)
Xét \(\Delta ABC\)vuông cân tai A ta có :
\(BC^2=AB^2+AC^2\)( ĐL Py - ta - go )
\(BC^2=5^2+5^2\)
\(BC^2=25+25\)
\(BC^2=50\)
\(\Rightarrow BC=\sqrt{50}\)
A B C
\(\Delta ABC\)vuông tại A có \(\widehat{B}=45^o\)
\(\Rightarrow\Delta ABC\)vuông cân tại A \(\Rightarrow AB=AC\)
Áp dụng định lý Pytago ta có: \(AB^2+AC^2=BC^2\)
\(\Rightarrow2AB^2=BC^2\)\(\Rightarrow BC^2=2.5^2=50\)
\(\Rightarrow BC=\sqrt{50}=\sqrt{25.2}=5\sqrt{2}\)
Vậy \(BC=5\sqrt{2}cm\)
BÀI 1:
a)
PT <=> \(3x-2=7-4\sqrt{3}\)
<=> \(3x=9-4\sqrt{3}\)
<=> \(x=3-\frac{4}{\sqrt{3}}\)
b)
pt => \(x+1=14-6\sqrt{5}\)
<=> \(x=13-6\sqrt{5}\)
BÀI 2:
a)
pt <=> \(\sqrt{x^2-9}=3\sqrt{x-3}\)
<=> \(x^2-9=9\left(x-3\right)\)
<=> \(x^2-9=9x-27\)
<=> \(x^2-9x+18=0\)
<=> \(\orbr{\begin{cases}x=6\\x=3\end{cases}}\)
BÀI 2:
b)
pt <=> \(\sqrt{x^2-4}=2\sqrt{x+2}\)
<=> \(x^2-4=4\left(x+2\right)\)
<=> \(x^2-4=4x+8\)
<=> \(x^2-4x-12=0\)
<=> \(\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)
BÀI 3:
pt <=> \(x^2=5\)
<=> \(\orbr{\begin{cases}x=\sqrt{5}\\x=-\sqrt{5}\end{cases}}\)