Cho x,y thỏa mãn: \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)
CMR: \(x^2+y^2=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)
\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)
Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)
(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.
=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2 =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2 2 2 Tương Tự:(1-c+c2) (1-d+d2) > 1+c2d2 2
bạn có thể dùng bđt phụ này để chứng minh
\(\sqrt{a+b+c}\le\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(1+tan^2a=\frac{1}{cos^2a}\)
\(1+3^2=\frac{1}{cos^2a}\)
\(10=\frac{1}{cos^2a}\)
\(cos^2a=\frac{1}{10}\)
\(cosa=\pm\sqrt{\frac{1}{10}}\)
\(sin^2a+cos^2a=1\)
\(sin^2a+\frac{1}{10}=1\)
\(sin^2a=\frac{9}{10}\)
\(sina=+\sqrt{\frac{9}{10}}\)
Vì tan dương nên có hai trường hợp :
TH1 : cả sin và cos cùng dương :
\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)
\(=\frac{\sqrt{\frac{9}{10}}\cdot\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)
\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)
\(=\frac{3}{8}\)
TH2 : cả sin và cos cùng âm
\(A=\frac{sina\cdot cosa}{sin^2a-cos^2a}\)
\(=\frac{-\sqrt{\frac{9}{10}}\cdot-\sqrt{\frac{1}{10}}}{\frac{9}{10}-\frac{1}{10}}\)
\(=\frac{\frac{3}{10}}{\frac{8}{10}}\)
\(=\frac{3}{8}\)
Xét tg ACD và tg BED có
^ADC = ^BDE (góc đối đỉnh)
^CAD = ^CBE (đề bài)
=> ^ACB = ^AEB => C và E cùng nhìn AB dưới 1 góc = nhau và = ^ACB không đổi
=> A;B;E;C cùng nằm trên 1 đường tròn cố định (Do A;B;C cố định)
Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H và đường tròn ngoại tiếp tứ giác ABEC tại F
Do ABC cân tại A => AF cũng là đường trung trực thuộc cạnh BC của tg ABC => Tâm đường tròn ngoại tiếp tứ giác AABEA thuộc AF => AF là đường kính của đường tròn ngoại tiếp tứ giác ABEC.
Nối E với F => ^AEF = 90 (góc nội tiếp chắn nửa đường tròn)
Xét tg vuông AHD và tg vuông AEF có
^EAF chung
=> tg AHD đồng dạng với tg AEF nên \(\frac{AD}{AF}=\frac{AH}{AE}\Rightarrow AD.AE=AH.AF\)
Do A,B,C cố định => AH không đổi
Do đường tròn ngoại tiếp tứ giác ABEC cố định => AF không đổi
=> AD.AE=AH.AF không đổi
\(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow4x^2-4x+9=9\Leftrightarrow4x^2-4x=0\)
\(\Leftrightarrow4x\left(x-1\right)=0\Leftrightarrow x=0;1\)
\(\sqrt{4x^2-4x+9}=3\)
\(\Leftrightarrow\left(\sqrt{4x^2-4x+9}\right)^2=3^2\)
\(\Leftrightarrow4x^2-4x+9=9\)
\(\Leftrightarrow4x^2-4x=0\)\(\Leftrightarrow4x\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x=0\\x-1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy tập nghiệm của pt là S={0;1}
gt <=> \(x\sqrt{1-y^2}=1-y\sqrt{1-x^2}\)
<=> \(x^2\left(1-y^2\right)=1+y^2\left(1-x^2\right)-2y\sqrt{1-x^2}\)
<=> \(x^2-x^2y^2=1+y^2-x^2y^2-2y\sqrt{1-x^2}\)
<=> \(2y\sqrt{1-x^2}=y^2-x^2+1\)
<=> \(4y^2\left(1-x^2\right)=\left(y^2-x^2+1\right)^2\)
<=> \(4y^2-4x^2y^2=x^4+y^4+1-2x^2y^2-2x^2+2y^2\)
<=> \(x^4+y^4+2x^2y^2-2x^2-2y^2+1=0\)
<=> \(\left(x^4+y^4+2x^2y^2\right)-2\left(x^2+y^2\right)+1=0\)
<=> \(\left(x^2+y^2\right)^2-2\left(x^2+y^2\right)+1=0\)
<=> \(\left(x^2+y^2-1\right)^2=0\)
<=> \(x^2+y^2-1=0\)
<=> \(x^2+y^2=1\)
VẬY TA CÓ ĐPCM.
Bài của Hermit thiếu điều kiện xác định + bài làm dài
\(-1\le x;y\le1\) theo bài ra ta có:
\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\left|x\right|\sqrt{1-y^2}+\left|y\right|\sqrt{1-y^2}\)
\(=\left|x\right|\sqrt{1-y^2}+\left|y\right|\sqrt{1-x^2}\le\frac{x^2+1-y^2}{2}+\frac{y^2+1-x^2}{2}=1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x\right|=\sqrt{1-y^2}\\\left|y\right|=\sqrt{1-x^2}\end{cases}\Leftrightarrow x^2=1-y^2\Leftrightarrow x^2+y^2=1\left(đpcm\right)}\)