Cho a,b>0.tìm minP= \(\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(B=\frac{1}{1+a^2+b^2}+\frac{1}{2ab}\)
\(B=\left(\frac{1}{1+a^2+b^2}+\frac{1}{6ab}\right)+\frac{1}{3ab}\)
Áp dụng BĐT Cauchy - Schwarz và Cauchy ta có:
\(B\ge\frac{\left(1+1\right)^2}{1+a^2+b^2+6ab}+\frac{1}{3\cdot\frac{\left(a+b\right)^2}{4}}\)
\(\ge\frac{4}{1+\left(a+b\right)^2+4ab}+\frac{1}{3\cdot\frac{1}{4}}\)
\(\ge\frac{4}{1+1+\left(a+b\right)^2}+\frac{4}{3}\ge\frac{4}{2+1}+\frac{4}{3}=\frac{8}{3}\)
Dấu "=" xảy ra khi: a = b = 1/2
a) Tg AHC vuông tại H có :\(\widehat{HAC}+\widehat{C}=\widehat{AHC}=90^o\)
\(\widehat{HAC}+\widehat{HAB}=\widehat{BAC}=90^o\)
\(\Rightarrow\widehat{HAB}=\widehat{C}\)
- Xét tg AHB và tg CHA có :
\(\widehat{AHB}=\widehat{AHC}=90^o\)
\(\widehat{HAB}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\Delta AHB~\Delta CHA\left(g.g\right)\)
(Dấu đồng dạng bị ngược, khi làm vào bài bạn quay ngược lại nha)
b) Xét tg BAH vuông tại H có :
AB2=BH2+AH2 (Pytago)
=>152=BH2+122
=>225=BH2+144
=>BH2=81
=>BH=9cm
- Do tg AHB đồng dạng tg CHA (cmt)
\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\)
\(\Rightarrow\frac{9}{12}=\frac{12}{HC}\)
\(\Rightarrow HC=16cm\)
- Có : HB+HC=BC
=> BC=9+16=25
- Xét tg ABC vuông tại A với định lí Pytago, ta tính được \(AC=20cm\)
#H
(Ý c,d để suy nghĩ tiếp)
A B C H 15 12 M
a, Xét tam giác AHB và tam giác CAB ta có :
^AHB = ^A = 900
^B _ chung
Vậy tam giác AHB ~ tam giác CAB ( g.g ) (1)
Xét tam giác AHC và tam giác BAC ta có :
^AHC = ^A = 900
^C _ chung
Vậy tam giác AHC ~ tam giác BAC ( g.g ) (2)
Từ (1) và (2) suy ra tam giác AHB ~ tam giác AHC
b, Áp dụng định lí Py ta go cho tam giác AHB ta có :
\(AB^2=AH^2+BH^2\Rightarrow BH^2=AB^2-AH^2\)
\(\Rightarrow BH^2=225-144=81\Rightarrow BH=9\)cm
Ta có tam giác AHB ~ tam giác AHC ( cma )
\(\Rightarrow\frac{AH}{AH}=\frac{HB}{HC}\Rightarrow1=\frac{9}{HC}\Rightarrow HC=9\)cm
Áp dụng Py ta go cho tam giác AHC ta có :
\(AC^2=AH^2+HC^2\Rightarrow AC^2=144+81=225\Rightarrow AC=15\)cm
c, Vì AM là tia phân giác ^BAC nên \(\frac{AB}{AC}=\frac{BM}{MC}\)
mà \(BM=BC-MC=18-MC\)
do \(BC=BH+HC=9+9=18\)cm
\(\Rightarrow\frac{AB}{AC}=\frac{18-MC}{MC}\Rightarrow18-MC=MC\Rightarrow MC=9\)cm
\(\Rightarrow BM=BC-MC=18-9=9\)
( hoặc có thể làm thế này * AM là trung tuyến nên MC = BM = 18/2 = 9 cm )
\(\Rightarrow BM=BH+HM\Rightarrow HM=BM-BH\)
thay số vào, mà bài mình sai ở đâu rồi, xem lại hộ mình nhé, mệt quá, cách làm tương tự như vậy
bì BH không bằng BM nhé do BH = 9 ; BM = 9 xem lại hộ mình nhé
Ta có:
\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
\(P=\left(\frac{\sqrt{ab}}{a+b}+\frac{a+b}{4\sqrt{ab}}\right)+\frac{3\left(a+b\right)}{4\sqrt{ab}}\)
\(\ge2\sqrt{\frac{\sqrt{ab}}{a+b}\cdot\frac{a+b}{4\sqrt{ab}}}+\frac{3\cdot2\sqrt{ab}}{4\sqrt{ab}}\) (BĐT Cauchy)
\(=2\cdot\frac{1}{2}+\frac{3}{2}=\frac{5}{2}\)
Dấu "=" xảy ra khi: a = b
Vậy \(Min_P=\frac{5}{2}\Leftrightarrow a=b\)
\(P=\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}=\frac{3}{4}\frac{a+b}{\sqrt{ab}}+\frac{1}{4}\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\)
Ta có:
\(a+b\ge2\sqrt{ab}\Leftrightarrow\frac{a+b}{\sqrt{ab}}\ge2\).
\(\frac{1}{4}\frac{a+b}{\sqrt{ab}}+\frac{\sqrt{ab}}{a+b}\ge2\sqrt{\frac{1}{4}\frac{\left(a+b\right)\sqrt{ab}}{\sqrt{ab}\left(a+b\right)}}=1\).
Suy ra \(P\ge\frac{3}{4}.2+1=\frac{5}{2}\).
Dấu \(=\)xảy ra khi \(a=b\).