Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Ta có:
\(a+b+ab=a^2+b^2\).
\(\Leftrightarrow a^2-ab+b^2=a+b\).
Ta có:
\(P=a^3+b^3+2020\).
\(P=\left(a+b\right)\left(a^2-ab+b^2\right)+2020\).
\(P=\left(a+b\right)\left(a+b\right)+2020\)(vì \(a^2-ab+b^2=a+b\)).
\(P=\left(a+b\right)^2+2020\).
Ta có:
\(\left(a+b\right)^2\ge0\forall a;b\).
\(\Rightarrow\left(a+b\right)^2+2020\ge2020\forall a;b\).
\(\Rightarrow P\ge2020\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a+b+ab=a^2+b^2\\\left(a+b\right)^2=0\end{cases}}\Leftrightarrow a=b=0\).
Vậy \(maxP=2020\Leftrightarrow a=b=0\).
b)\(A=\frac{27-12x}{x^2+9}\).
Vì \(x^2+9>0\forall x\)nên \(A\)luôn được xác định.
\(A=\frac{27-12x}{x^2+9}=\frac{4x^2-4x^2+27-12x}{x^2+9}=\frac{\left(4x^2+36\right)-\left(4x^2+12x+9\right)}{x^2+9}\)
\(A=\frac{4\left(x^2+9\right)-\left(2x+3\right)^2}{x^2+9}=4-\frac{\left(2x+3\right)^2}{x^2+9}\).
Ta có:
\(\left(2x+3\right)^2\ge0\forall x\).
\(\Rightarrow\frac{\left(2x+3\right)^2}{x^2+9}\ge0\forall x\)(vì \(x^2+9>0\forall x\)).
\(\Rightarrow-\frac{\left(2x+3\right)^2}{x^2+9}\le0\forall x\).
\(\Rightarrow4-\frac{\left(2x+3\right)^2}{x^2+9}\le4\forall x\).
\(\Rightarrow A\le4\).
Dấu bằng xảy ra.
\(\Leftrightarrow\left(2x+3\right)^2=0\Leftrightarrow x=-\frac{3}{2}\).
Vậy \(maxA=4\Leftrightarrow x=-\frac{3}{2}\).

bạn tự kết luận nhé !
a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)
\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)
c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)
d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)
\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )
e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)
\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)
Đặt \(144x^2-60x+4=t\)
\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)
\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)
suy ra :TH1 : \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)
TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)
\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)
