K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2020

mk biết

15 tháng 9 2020

E max 

\(\Leftrightarrow\frac{1}{2x-\sqrt{x}+5}\) lớn nhất 

\(2x-\sqrt{x}+5\)   nhỏ nhất 

\(=\left(\sqrt{2x}\right)^2-2\cdot\sqrt{2x}\cdot\frac{\sqrt{2}}{4}+\left(\frac{\sqrt{2}}{4}\right)^2-\left(\frac{\sqrt{2}}{4}\right)^2+5\) 

\(=\left(\sqrt{2x}-\frac{\sqrt{2}}{4}\right)^2+\frac{39}{8}\) 

Ta có \(\left(\sqrt{2x}-\frac{\sqrt{2}}{4}\right)^2+\frac{39}{8}\ge\frac{39}{8}\forall x\ge0\) 

Dấu = xảy ra 

\(\Leftrightarrow\left(\sqrt{2x}-\frac{\sqrt{2}}{4}\right)^2=0\) 

\(\sqrt{2}\cdot\sqrt{x}-\frac{\sqrt{2}}{4}=0\) 

\(\sqrt{2}\cdot\sqrt{x}=\frac{\sqrt{2}}{4}\) 

\(\sqrt{x}=\frac{\sqrt{2}}{4}:\sqrt{2}\) 

\(\sqrt{x}=\frac{1}{4}\) 

\(x=\left(\frac{1}{4}\right)^2=\frac{1}{16}\) 

E max = \(\frac{1}{\frac{39}{8}}=\frac{8}{39}\Leftrightarrow x=\frac{1}{16}\)

15 tháng 9 2020

\(E=\frac{1}{2x-\sqrt{x}+5}\)

\(=\frac{1}{2\left(x-\frac{\sqrt{x}}{2}+\frac{5}{2}\right)}\)

\(=\frac{1}{2\left(x-2.\sqrt{x}.\frac{1}{4}+\frac{1}{16}-\frac{1}{16}+\frac{5}{2}\right)}\)

\(=\frac{1}{2\left(x-\frac{\sqrt{x}}{4}\right)^2+\frac{39}{8}}\le\frac{8}{39}\)

Dấu "="xảy ra \(\Leftrightarrow x-\frac{\sqrt{x}}{4}=0\Leftrightarrow x=\frac{\sqrt{x}}{4}\)

\(\Leftrightarrow16x^2=x\Leftrightarrow x\left(16x-x\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{16}\end{cases}}\)

Vậy \(E_{max}=\frac{8}{39}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{16}\end{cases}}\)

16 tháng 9 2020

\(ĐKXĐ:x\ge-\frac{3}{2}\)

Ta có : \(2\sqrt{x+\sqrt{2x+3}+2}=\sqrt{2}\left(x+1\right)\)

\(\Leftrightarrow2.\sqrt{2}.\sqrt{x+\sqrt{2x+3}+2}=\sqrt{2}.\sqrt{2}.\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{2x+2\sqrt{2x+3}+4}=2\left(x+1\right)\)

\(\Leftrightarrow2\sqrt{\left(2x+3\right)+2\sqrt{2x+3}+1}=2.\left(x+1\right)\)

\(\Leftrightarrow\sqrt{\left(\sqrt{2x+3}+1\right)^2}=x+1\)

\(\Leftrightarrow\sqrt{2x+3}+1=x+1\)

\(\Leftrightarrow\sqrt{2x+3}=x\)

\(\Leftrightarrow\hept{\begin{cases}x\ge0\\2x+3=x^2\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x\ge0\\x^2-2x-3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge0\\\left(x-3\right)\left(x+1\right)=0\end{cases}}\) \(\Leftrightarrow x=3\)( Thỏa mãn )

Vậy pt có nghiệm duy nhất \(x=3\)

15 tháng 9 2020

mik ko biết

15 tháng 9 2020

Để y có nghĩa

\(\Leftrightarrow\hept{\begin{cases}x^2-5x+6\ge0\\x-1\ge0\\\sqrt{x-1}\ne0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^2-5x+25-19\ge0\\x\ge1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2-19\ge0\\x\ge1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)^2\ge19\\x\ge1\end{cases}}\)

Đến đây tự làm được rồi nhỉ ??

16 tháng 9 2020

Đặt \(A=\frac{a}{b^2+c^2}+\frac{b}{c^2+a^2}+\frac{c}{a^2+b^2}\)

Ta có : \(\frac{a}{b^2+c^2}=\frac{a}{3-a^2}=\frac{a}{\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}=\frac{a^2}{a\sqrt{\left(3-a^2\right)\left(3-a^2\right)}}\)

\(=\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\)

Theo BĐT Cô - si ta có :

\(0< \sqrt[3]{2a^2.\left(3-a^2\right).\left(3-a^2\right)}\le\frac{2a^2+3-a^2+3-a^2}{3}=2\)

\(\Leftrightarrow0< 2a^2.\left(3-a^2\right)\left(3-a^2\right)\le8\)

\(\Leftrightarrow0< \sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}\le2\sqrt{2}\)

\(\Leftrightarrow\frac{a^2\sqrt{2}}{\sqrt{2a^2\left(3-a^2\right)\left(3-a^2\right)}}\ge\frac{a^2\sqrt{2}}{2\sqrt{2}}=\frac{a^2}{2}\)

Hay : \(\frac{a}{b^2+c^2}\ge\frac{a^2}{2}\)

Chứng minh tương tự ta có : \(\frac{b}{c^2+a^2}\ge\frac{b^2}{2};\frac{c}{a^2+b^2}\ge\frac{c^2}{2}\)

Do đó : \(A\ge\frac{1}{2}\left(a^2+b^2+c^2\right)=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=1\)

Vậy \(Min\) \(A=\frac{3}{2}\) khi \(a=b=c=1\)

17 tháng 9 2020

Gọi biểu thức là N

Dự đoán \(MinN=\frac{3}{2}\)khi a = b = c = 1, ta dùng UCT giải quyết bài toán

Ta viết lại \(N=\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\)(do \(a^2+b^2+c^2=3\)theo giả thiết)

Xét bất đẳng thức phụ \(\frac{a}{3-a^2}\ge\frac{a^2}{2}\)(*)

Thật vậy: (*)\(\Leftrightarrow\frac{a\left(a+2\right)\left(a-1\right)^2}{2\left(3-a^2\right)}\ge0\)(Đúng vì \(3-a^2=b^2+c^2>0\)và a > 0)

Tương tự: \(\frac{b}{3-b^2}\ge\frac{b^2}{2}\)(1); \(\frac{c}{3-c^2}\ge\frac{c^2}{2}\)(2)

Cộng theo vế ba bất đẳng thức (*), (1) và (2), ta được: \(\frac{a}{3-a^2}+\frac{b}{3-b^2}+\frac{c}{3-c^2}\ge\frac{a^2+b^2+c^2}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi a = b = c = 1

15 tháng 9 2020

Chứng tỏ 0<Q<2 nha

15 tháng 9 2020

\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+1=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)

\(P+1=\frac{x^2+x+1}{x+\sqrt{x}+1}=\frac{x^2+2x+1-x}{x+\sqrt{x}+1}=\frac{\left(x+\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x+\sqrt{x}+1}=x-\sqrt{x}+1\ge\frac{3}{4}\)

15 tháng 9 2020

Câu b: Xet tg vuông AEH và tg vuông ABC có

^BAH = ^ACB (cùng phụ với ^ABC)

=> Tg AEH đồng dạng với tg ABC \(\Rightarrow\frac{AE}{AC}=\frac{EH}{AB}\) mà EH=AF (cạnh đối HCN)

\(\Rightarrow\frac{AE}{AC}=\frac{AF}{AB}\Rightarrow AE.AB=AF.AC\)

Câu c: 

Ta có AM=BC/2==BM=CM (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> tg AMC cân tại M => ^MAC = ^ACB mà  ^BAH = ^ACB (cmt)  => ^MAC = ^BAH (1)

Ta có ^AHE = ^ABC (cùng phụ với ^BAH) mà ^AHE = ^HAC (góc so le trong) => ^ABC = ^HAC (2)

Gọi giao của AH với EF là O xét tg AOF  có

AH=EF (hai đường chéo HCN = nhau) 

O là trung điểm của AH vào EF 

=> OA=OF => tg AOF cân tại O => ^HAC = ^AFE (3)

Từ (2) và (3) => ^AFE = ^ABC (4)

Mà ^ABC + ^ACB = 90 (5)

Từ (1) (4) (5) => ^MAC + ^AFE = 90

Xét tg AKF có ^AKF = 180 - (^MAC + ^AFE) = 180-90=90 => AM vuông góc EF tại K