cho tam giác abc, trung tuyến am. trên ab, ac lần lượt lấy e, f sao cho ae=af. đoạn ef cắt am tại i. vẽ phân giác ck của góc acb cắt am,ab lần lượt tại h và k. chứng minh: hc/hk - bc/ac = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(\frac{-10x^2+30x+30}{x-4}=\frac{-10\left(x-4\right)\left(x+1\right)-10}{x-4}=-10\left(x+1\right)-\frac{10}{x-4}\inℤ\)
mà \(x\inℤ\)nên \(x-4\inƯ\left(10\right)=\left\{-10,-5,-2,-1,1,2,5,10\right\}\Leftrightarrow x\in\left\{-6,-1,2,3,5,6,9,14\right\}\).

<=>6x(x-5)-(x-5)=0
<=>(x-5)(6x-1)=0
<=>x-5=0 hoặc 6x-1=0
<=>x=5 hoặc x=1/6
Vậy x=5 hoặc x=1/6
Hoặc vậy tập nghiệm của phương trình là S={5;1/6}

A B C 6 8 H E D F K
a, Xét tam giác ABC và tam giác HBA ta có :
^BAC = ^AHB = 900
^B chung
Vậy tam giác ABC ~ tam giác HBA ( g.g )
b, Xét tam giác AHB và tam giác CHA ta có :
^AHB = ^CHA = 900
^ABH = ^HAC ( cùng phụ với ^BAH )
Vậy tam giác AHB ~ tam giác CHA ( g.g )
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\)

Xét n thuộc N; n>2 ta có
\(\frac{1}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{4n^2+4n+1}}< \frac{\sqrt{n+1}-\sqrt{n}}{2\sqrt{n\left(n+1\right)}}=\frac{1}{2}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Suy ra
\(VT< \frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< \frac{1}{2}\)

Với x > 0, áp dụng bất đẳng thức AM-GM ta có :
\(x+2021\ge2\sqrt{2021x}\Rightarrow\left(x+2021\right)^2\ge8084x\)
\(\Rightarrow\frac{1}{\left(x+2021\right)^2}\le\frac{1}{8084x}\Leftrightarrow\frac{x}{\left(x+2021\right)^2}\le\frac{1}{8084}\)
Dấu "=" xảy ra <=> x = 2021
Vậy ...
\(\frac{x}{\left(x+2021\right)^2}\left(x>0\right)\)
\(=\frac{1}{\frac{1}{x}\left(x+2021\right)^2}\)
\(=\frac{1}{\left(\frac{x+2021}{\sqrt{x}}\right)^2}\)
\(=\frac{1}{ \left(\sqrt{x}+\frac{2021}{\sqrt{x}}\right)^2}\)
Ta có :
\(\sqrt{x}+\frac{2021}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\frac{2021}{\sqrt{x}}}=2\sqrt{2021}\)
\(\rightarrow\left(\sqrt{x}+\frac{2021}{\sqrt{x}}\right)^2\ge4.2021=8084\)
\(\rightarrow\frac{1}{\left(\sqrt{x}+\frac{2021}{\sqrt{x}}\right)^2}\le\frac{1}{8084}\)
Dấu ''='' xảy ra \(\Leftrightarrow\sqrt{x}=\frac{2021}{\sqrt{x}}\Leftrightarrow x=2021\)
Vậy Max \(\left(\frac{x}{\left(x+2021\right)^2}\right)=\frac{1}{8084}\Leftrightarrow x=2021\)

\(\hept{\begin{cases}xy-3zt=1\\xz+yt=2\end{cases}}\Rightarrow\hept{\begin{cases}x^2y^2-6xyzt+9z^2t^2=1\\x^2z^2+2xyzt+y^2t^2=4\end{cases}}\)
\(\Rightarrow x^2y^2-6xyzt+9z^2t^2+3\left(x^2z^2+2xyzt+y^2t^2\right)=1+3.4\)
\(\Rightarrow x^2y^2+9z^2t^2+3x^2z^2+3y^2t^2=13\)
Có tổng các hệ số của VT là \(16\)mà \(x,y,z,t\)nguyên nên nếu tồn tại \(x,y,z,t\)thỏa mãn thì phải có một số bằng \(0\).
- Nếu \(x=0\)hoặc \(y=0\): \(-3zt=1\)(không có nghiệm nguyên)
- Nếu \(z=0\): \(\hept{\begin{cases}xy=1\\yt=2\end{cases}}\)có nghiệm nguyên là \(x=y=1,t=2\)hoặc \(x=y=-1,t=-2\).
- Nếu \(t=0\): \(\hept{\begin{cases}xy=1\\xz=2\end{cases}}\)có nghiệm nguyên là \(x=y=1,z=2\)hoặc \(x=y=-1,z=-2\)

Gọi số học sinh lớp 8A là x ( x < 82 ; học sinh )
thì số học sinh lớp 8B là 82 - x ( học sinh )
lớp 8A quyên góp 6000x ( đồng )
lớp 8B quyên góp ( 82 - x ) . 5000 ( đồng )
tổng só tiền cả 2 lớp quyên góp là 450000 đồng nên ta có phương trình :
\(6000x+\left(82-x\right).5000=450000\)
\(\Leftrightarrow6000x+410000-5000x=450000\)
\(\Leftrightarrow1000x=450000-410000\)
\(\Leftrightarrow1000x=40000\)
\(\Leftrightarrow x=40\left(tm\right)\)
Vậy số học sinh lớp 8A là 40 học sinh ; số học sinh lớp 8B là 42 học sinh