tìm x, y, z biết xy=2, yz=3, xz=54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\left(\frac{2009}{2}+1\right)+\left(\frac{2008}{3}+1\right)+....+\left(\frac{1}{2010}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+....+\frac{2011}{2010}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2011\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}\)
\(=\frac{1}{2011}\)
Bước1: Chứng minh: x>ln(1+x)>x-x^2/2 (khảo sát hàm lớp 12)
Bước2: Đặt A=1+1/2+1/3+...+1/N.
B=1+1/2^2+1/3^2+...+1/N^2.
C=1+1/1.2+1/2.3+...+1/(N-1).N
D=ln(1+1)+ln(1+1/2)+ln(1+1/3)+...
...+ln(1+1/N).
Bước 3: Nhận xét: 1/k(k+1)=1/k-1/(k+1)
suy ra C=2-1/N <2
Bước 4: Nhận xét ln(k+1)-lnk=ln(1+1/k)
suy ra D=ln(N+1)
Bước 5: Nhận xét B<C<2
Bước 6: Chứng minh A->+oo (Omerta_V đã CM)
Bước 7: Từ Bước1 suy ra:
A>D>A-1/2B>A-1.
Bước 8: Vậy A xấp sỉ D với sai số tuyệt đối bằng 1.
Mà A->+oo. Nên khi N rất lớn thì sai số tương đối có thể coi là 0.
Cụ thể hơn Khi N>2^k thì sai số tương đối < k/2
Vậy khi N lớn hơn 1000000 thì ta có thể coi A=ln(N+1).
vậy đáp án là 5
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)......\left(1-\frac{1}{100}\right)+x=2+\frac{1}{5}\)
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}......\frac{99}{100}+x=\frac{11}{5}\)
\(\frac{1}{100}+x=\frac{11}{5}\)
\(x=\frac{11}{5}-\frac{1}{100}=\frac{219}{100}\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2010}{1}+\frac{2009}{2}+...+\frac{1}{2010}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\left(1+1+1+...+1\right)+\frac{2009}{2}+\frac{2008}{3}+...+\frac{1}{2010}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{1+\left(1+\frac{2009}{2}\right)+\left(1+\frac{2008}{3}\right)+...+\left(1+\frac{1}{2010}\right)}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{\frac{2011}{2}+\frac{2011}{3}+...+\frac{2011}{2010}+\frac{2011}{2011}}\)
\(\Rightarrow A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}}{2011.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}\right)}\)
\(\Rightarrow A=\frac{1}{2011}\)
bạn thiếu kìa bạn ơi vd nhu x+y+z=? mới biết chứ
Ta có : xy.yz.xz = 2.3.54
<=> ( xyz )2 = 324
=> ( xyz )2 = 182 = ( - 18 )2
TH1 : xyz = 18
=> z = xyz : xy = 18 : 2 = 9
=> 9y = 3 => y = 1/3
=> 1/3x = 2 => x = 6
TH2 : xyz = - 18
=> z = xyz : xy = - 18 : 2 = - 9
=> - 9y = 3 => y = - 1/3
=> - 1/3x = 2 => x = - 6
Vậy ( x;y;z ) = { ( 9;1/3;6 ); ( - 9;- 1/3 ; - 6 ) }