K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2020

PT tích à, thế thì đến đây xoq r còn gì

Hoặc 3x+4=0 hoặc x+1=0 hoặc 6x+7=0

=> \(x\in\left\{-\frac{4}{3};-1;-\frac{7}{6}\right\}\)

14 tháng 10 2020

Đặt \(\left(3x+4\right)\left(x+1\right)\left(6x+7\right)^2=0\)

TH1 : \(3x+4=0\Leftrightarrow x=-\frac{4}{3}\)

TH2 : \(x+1=0\Leftrightarrow x=-1\)

TH3 : \(6x+7=0\Leftrightarrow x=-\frac{7}{6}\)

14 tháng 10 2020

ko bík

14 tháng 10 2020

1) \(\Leftrightarrow\sqrt[5]{x-1}+\sqrt[3]{x+8}+x^3-1=0\)

Nhận thấy \(x=0\)là một nghiệm của phương trình:

Xét \(x< 0\).Khi đó: \(\hept{\begin{cases}x-1< -1\\x+8< 8\\x^3-1< -1\end{cases}\Rightarrow\sqrt[5]{x-1}+\sqrt[3]{x+8}+x^3-1< \sqrt[5]{-1}+\sqrt[3]{8}-1=0}\)

Tương tự với \(x>0\). Khi đó: \(\sqrt[5]{x-1}+\sqrt[3]{x+8}+x^3-1>0\)

Vậy \(x=0\)là nghiệm duy nhất của phương trình.

2) \(\Leftrightarrow3\left(x^2+7x+7\right)+2\sqrt{x^2+7x+7}-5=0\)

ĐKXĐ: \(x^2+7x+7\ge0\)

Đặt: \(\sqrt{x^2+7x+7}=t\left(t\ge0\right)\)

Phương trình viết lại thành: \(3t^2+2t-5=0\)\(\Leftrightarrow\left(3t+5\right)\left(t-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=\frac{-5}{3}\left(loai\right)\end{cases}}\)

Với \(t=1\)ta được \(\sqrt{x^2+7x+7}=1\Leftrightarrow x^2+7x+7=1\Leftrightarrow x^2+7x+6=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-6\end{cases}\left(tm\right)}\)

Vậy: \(S=\left\{-1;-6\right\}\)

8 tháng 1 2021

xét \(b^2+2a^2=\frac{b^2}{1}+\frac{a^2}{1}+\frac{a^2}{1}\ge\frac{\left(b+a+a\right)^2}{1+1+1}=\frac{\left(b+2a\right)^2}{3}\)

\(\Leftrightarrow\sqrt{b^2+2a^2}\ge\sqrt{\frac{\left(b+2a\right)^2}{3}}=\frac{b+2a}{\sqrt{3}}\)\(\Leftrightarrow\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{b+2a}{ab\sqrt{3}}\)

Tương tự  \(\frac{\sqrt{c^2+2b^2}}{bc}\ge\frac{c+2b}{bc\sqrt{3}}\)và \(\frac{\sqrt{a^2+2c^2}}{ca}\ge\frac{a+2c}{ca\sqrt{3}}\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\frac{b+2a}{ab\sqrt{3}}+\frac{c+2b}{bc\sqrt{3}}+\frac{a+2c}{ca\sqrt{3}}\)\(=\frac{b}{ab\sqrt{3}}+\frac{2a}{ab\sqrt{3}}+\frac{c}{bc\sqrt{3}}+\frac{2b}{bc\sqrt{3}}+\frac{a}{ca\sqrt{3}}+\frac{2c}{ca\sqrt{3}}\)\(=\frac{1}{a\sqrt{3}}+\frac{2}{b\sqrt{3}}+\frac{1}{b\sqrt{3}}+\frac{2}{c\sqrt{3}}+\frac{1}{c\sqrt{3}}+\frac{2}{a\sqrt{3}}\)\(=\frac{3}{\sqrt{3}}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\sqrt{3}\cdot1980\)(đpcm)

Dấu "=" xăy ra khi a=b=c=3/1980

14 tháng 10 2020

998 vì (căn x)^2 = x mà bình phương của 1 số là số đó nhân với chính nó mà nhân chính là : x.y=z <=> z=(x+x)y lần

nên căn của căn và lặp lại sẽ có tổng bằng số đầu(?) kém giải thích :v

14 tháng 10 2020

ta có : 79^9= 781=74*(20+1)= (....1)

=> 79^9 có số tận cùng là 1

14 tháng 10 2020

9 đồng dư với 1 mod 4 => \(9^9\) đồng dư với 1 mod 4 => \(7^{9^9}\)\(7^{4k+1}\) (k thuộc N)   thì có chữ số tận cùng là 7

14 tháng 10 2020

a) \(=\sqrt{\frac{9}{2}}-\sqrt{16.2}+\sqrt{36.2}-\sqrt{81.2}\)

\(=\frac{3}{2}\sqrt{2}-4\sqrt{2}+6\sqrt{2}-9\sqrt{2}\)

\(=\left(\frac{3}{2}-4+6-9\right)\sqrt{2}=\frac{-11}{2}\sqrt{2}\)

b) \(=\frac{\sqrt{5}+3-\sqrt{5}+3}{\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)}.\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{1-\sqrt{3}}\)

\(=\frac{6}{5-9}.\left(-\sqrt{3}\right)=\frac{3}{2}\sqrt{3}\)

c) \(=\left(\frac{a-1-4\sqrt{a}+\sqrt{a}+1}{a-1}\right):\frac{\sqrt{a}\left(\sqrt{a}-2\right)}{a-1}\)

\(=\frac{a-3\sqrt{a}}{a-1}.\frac{a-1}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

\(=\frac{\sqrt{a}\left(\sqrt{a}-3\right)}{\sqrt{a}\left(\sqrt{a}-2\right)}=\frac{\sqrt{a}-3}{\sqrt{a}-2}\)