19 phần 14 nhân 3 phần 7 cộng 3 phần 7 nhân 5 phần 14 trừ 2 phần 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC+CD+DB=AB
=>CD=6-2-2=2(cm)
M là trung điểm của AB
=>\(AM=MB=\dfrac{AB}{2}=3\left(cm\right)\)
Vì AC<AM
nên C nằm giữa A và M
=>AC+CM=AM
=>CM+2=3
=>CM=1(cm)
Vì BD<BM
nên D nằm giữa B và M
=>BD+DM=BM
=>DM=3-2=1(cm)
Vì CM=MD
nên M là trung điểm của CD
b: Vì AC=CD(=2cm)
nên C là trung điểm của AD
Vì CD=DB
nên D là trung điểm của CB
M là trung điểm của AB; M là trung điểm của CD
Để hệ có nghiệm duy nhất thì \(\dfrac{1}{m}\ne\dfrac{m}{1}\)
=>\(m^2\ne1\)
=>\(m\notin\left\{1;-1\right\}\)
Sửa đề: \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}mx+m^2y=m^2+m\\mx+y=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(m^2-1\right)=m^2-m\\x+my=m+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=\dfrac{m\left(m-1\right)}{\left(m-1\right)\left(m+1\right)}=\dfrac{m}{m+1}\\x=m+1-my=m+1-\dfrac{m^2}{m+1}=\dfrac{2m+1}{m+1}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x>=2\\y>=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{2m+1-2m-2}{m+1}>=0\\\dfrac{m-m-1}{m+1}>=0\end{matrix}\right.\)
=>\(-\dfrac{1}{m+1}>=0\)
=>m+1<0
=>m<-1
mà \(m\in\left(-10;10\right)\)
nên \(m\in\left\{-9;-8;...;-2\right\}\)
=>Có 8 số nguyên m thỏa mãn
Đề bài phải là:
1/2 + 5/6 + 11/12 + 19/20 + 41/42 + 55/56 chứ em
(2x⁴ - x³ + 3x²) : (-1/3 x²)
= 2x⁴ : (-1/3 x²) - x³ : (-1/3 x²) + 3x² : (-1/3 x²)
= -6x² + 3x - 9
(2\(x^4\) - \(x^3\) + 3\(x^2\)) : (- \(\dfrac{1}{3}\)\(x^2\))
= \(x^2\).(2\(x^2\) - \(x\) + 3) : (\(x^2\)): (\(\dfrac{-1}{3}\))
= (2\(x^2\) - \(x\) + 3) x \(\dfrac{3}{-1}\)
= - 6\(x^2\) +3\(x\) - 9
a: Xét tứ giác MAOB có \(\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0\)
nên MAOB là tứ giác nội tiếp
b: Ta có; ΔOCD cân tại O
mà OK là đường trung tuyến
nên OK\(\perp\)CD tại K
Ta có: \(\widehat{OKM}=\widehat{OAM}=\widehat{OBM}=90^0\)
=>O,K,A,M,B cùng thuộc đường tròn đường kính OM
c: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của BA(1)
Ta có: OA=OB
=>O nằm trên đường trung trực của BA(2)
Từ (1),(2) suy ra OM là đường trung trực của AB
=>OM\(\perp\)AB tại H
Xét ΔOHN vuông tại H và ΔOKM vuông tại K có
\(\widehat{HON}\) chung
Do đó: ΔOHN~ΔOKM
=>\(\dfrac{OH}{OK}=\dfrac{ON}{OM}\)
=>\(OH\cdot OM=OK\cdot ON\left(3\right)\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(OH\cdot OM=OA^2=R^2\left(4\right)\)
Từ (3),(4) suy ra \(OK\cdot ON=R^2=OD^2\)
=>\(\dfrac{OK}{OD}=\dfrac{OD}{ON}\)
Xét ΔOKD và ΔODN có
\(\dfrac{OK}{OD}=\dfrac{OD}{ON}\)
\(\widehat{KOD}\) chung
Do đó: ΔOKD~ΔODN
=>\(\widehat{OKD}=\widehat{ODN}=90^0\)
=>ND là tiếp tuyến của (O)
19/14 x 3/7 + 3/7 x 5/14 - 3/7
= 3/7 x (19/14 + 5/14 - 1)
= 3/7 x 5/7
= 35/49
= 5/7