giúp mình với,đang cần gấp ạ
cho hình thang cân MNPQ(MN//PQ) có góc P=góc Q=120 độ, MN=9cm, MQ=NP=4cm.Tính độ dài đáy PQ và diện tích hình thang cân MNPQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`(2x-3)(x^2+x+1)-x(2x^2-x-1)`
`=2x^3+2x^2+2x-3x^2-3x-3-2x^3+x^2+x`
`=(2x^3-2x^3)+(2x^2-3x^2+x^2)+(2x-3x+x)-3`
`=-3`
(x + 1)2 - (2x - 1)2 = 0
<=> (x + 1 + 2x - 1) (x + 1 - 2x + 1) = 0
<=> 3x (- x + 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\-x+2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy tập nghiệm pt: S = {0 ; 2}.
( x + 1 )2 - ( 2x - 1 )2 = 0
=> ( x + 1 )2 = ( 2x - 1 )2
=> x + 1 = 2x - 1
=> x + 2 = 2x
=> 2x - x = 2
=> x = 2
Vậy x = 2
Đặt \(f\left(x\right)=\left(x+1\right)P\left(x\right)-x\).
Khi đó \(f\left(k\right)=0\)với mọi \(k=0,1,2,...,2018\)mà \(P\left(x\right)\)có bậc \(2018\)nên \(f\left(x\right)\)có bậc \(2019\)
mà \(f\left(x\right)=0\)tại \(2019\)giá trị nên \(f\left(x\right)=ax\left(x-1\right)\left(x-2\right)...\left(x-2018\right)\).
Với \(x=-1\): \(a.\left(-1\right)\left(-2\right)...\left(-2019\right)=\left(-1+1\right)P\left(-1\right)-\left(-1\right)\)
\(\Leftrightarrow a=-\frac{1}{2019!}\).
\(P\left(2019\right)=\frac{f\left(2019\right)+2019}{2020}=\frac{-1+2019}{2020}=\frac{1009}{1010}\)
Tổng các hệ số phi khai triển đa thức \(P\left(x\right)\)là \(P\left(1\right)\).
\(P\left(1\right)=\left(1^3-2.1^2+2\right)^{2018}=1^{2018}=1\)
Đa thức \(P\left(x\right)=x^3-3x+1\)có ba nghiệm phân biệt \(x_1,x_2,x_3\) có:
\(\hept{\begin{cases}x_1+x_2+x_3=0\\x_1x_2+x_2x_3+x_3x_1=-3\\x_1x_2x_3=-1\end{cases}}\)
\(E=Q\left(x_1\right)Q\left(x_2\right)Q\left(x_3\right)=\left(x_1^2-1\right)\left(x_2^2-1\right)\left(x_3^2-1\right)\)
\(=\left(x_1x_2x_3\right)^2-\left(x_1^2x_2^2+x_2^2x_3^2+x_3^2x_1^2\right)+\left(x_1^2+x_2^2+x_3^2\right)-1\)
\(=\left(x_1x_2x_3\right)^2-\left[\left(x_1x_2+x_2x_3+x_3x_1\right)^2-2x_1x_2x_3\left(x_1+x_2+x_3\right)\right]+\left[\left(x_1+x_2+x_3\right)^2-2\left(x_1x_2+x_2x_3+x_3x_1\right)\right]-1\)
\(=\left(-1\right)^2-3^2+2.3-1=-3\)
Trả lời:
A = 4x2 - 12x + 17 = ( 2x )2 - 2.2x.3 + 9 + 8 = ( 2x - 3 )2 + 8 \(\ge8\forall x\)
Dấu "=" xảy ra khi 2x - 3 = 0 <=> x = 3/2
Vậy Min A = 8 <=> x = 3/2
\(B=x^2-x+3=x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{11}{4}=\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\forall x\)
Dấu "=" xảy ra khi x - 1/2 = 0 <=> x = 1/2
Vậy Min B = 11/4 <=> x = 1/2
C = x2 - 6x + 3 = x2 - 2.x.3 + 9 - 6 = ( x - 3 )2 - 6 \(\ge-6\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy Min C = - 6 <=> x = 3
Trả lời:
(bài này tìm GTNN, GTLN đúng không bạn?)
\(G=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+3\right)\left(x+2\right)\right]\)
\(=\left(x^2+5x-6\right)\left(x^2+5x+6\right)=\left(x^2+5x\right)^2-6^2=\left(x^2+5x\right)^2-36\ge-36\forall x\)
Dấu "=" xảy ra khi \(x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
Vậy GTNN của G = - 36 khi x = 0; x = - 5
\(H=5-8x-x^2=-\left(x^2+8x-5\right)=-\left(x^2+2.x.4+16-21\right)=-\left[\left(x+4\right)^2-21\right]\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu "=" xảy ra khi x + 4 = 0 <=> x = - 4
Vậy x + 4 = 0 <=> x = - 4
Vậy GTLN của H = 21 khi x = - 4
\(I=4x-x^2+1=-\left(x^2-4x-1\right)=-\left(x^2-2.x.2+4-5\right)=-\left[\left(x-2\right)^2-5\right]\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu "=" xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của I = 5 khi x = 2
Trả lời:
M P Q R S
a, Xét tam giác MRP và tam giác MSQ có:
^M chung
^MRP = ^MSQ = 90o
=> tam giác MRP ~ tam giác MSQ ( g-g )
=> \(\frac{MP}{MQ}=\frac{MR}{MS}\) ( tỉ số đồng dạng )
=> MP.MS = MQ.MR (đpcm)
b, Ta có: \(\frac{MP}{MQ}=\frac{MR}{MS}\) (cmt) => \(\frac{MP}{MR}=\frac{MQ}{MS}\)
Xét tam giác MPQ và tam giác MRS có:
^M chung
\(\frac{MP}{MR}=\frac{MQ}{MS}\) (cmt)
=> tam giác MPQ ~ tam giác MRS ( c-g-c ) (đpcm)