Bài 2. Cho ( a + b + c)2 = 3(ab + bc + ca). Chứng minh rằng a = b = c.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
ta có : \(a^2+b^2+c^2=ab+bc+ca\)
\(2.\left(a^2+b^2+c^2\right)=2.\left(ab+bc+ca\right)\)
\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}=>\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}=>}a=b=c\)
1) Để A có giá trị là một số nguyên thì : 5\(⋮\) ( 3+x)
=> \(\left(x+3\right)\inƯ\left(5\right)=\left\{1;5;-1;-5\right\}\)
=> \(x\in\left\{-2;2;-4;-8\right\}\)
2) để B có giá trị là một số nguyên thì
\(\left(2x+4\right)⋮\left(x+3\right)\)
\(\left(2x+6-2\right)⋮\left(x+3\right)\)
\(\left[2.\left(x+3\right)-2\right]⋮\left(x+3\right)\)
\(-2⋮\left(x+3\right)\)
\(\left(x+3\right)\inƯ\left(-2\right)=\left\{1;2;-1;-2\right\}\)
\(x\in\left\{-2;-1;-4;-5\right\}\)
3) Để C có giá trị là số nguyên thì
\(\left(3x+8\right)⋮\left(x-1\right)\)
\(\left(3x-3+11\right)⋮\left(x-1\right)\)
\(\left[3.\left(x-1\right)+11\right]⋮\left(x-1\right)\)
\(11⋮\left(x-1\right)\)
\(\left(x-1\right)\inƯ\left(11\right)=\left\{1;11;-1;-11\right\}\)
\(x\in\left\{2;12;0;-10\right\}\)
d )....
\(\left(3x-2\right)⋮\left(2x+1\right)\)
\(2.\left(3x-2\right)⋮\left(2x+1\right)\)
\(\left(6x-4\right)⋮\left(2x+1\right)\)
\(\left(6x+3-7\right)⋮\left(2x+1\right)\)
\(\left[3.\left(2x+1\right)-7\right]⋮\left(2x-1\right)\)
\(-7⋮\left(2x+1\right)\)
\(\left(2x+1\right)\inƯ\left(-7\right)=\left\{1;7;-1;-7\right\}\)
\(x\in\left\{0;3;-1;-4\right\}\)
huhu mọi người ơi em bị type lỗi ấy ạ, cái dòng số có gạch trên đầu là mẫu số, còn không có gạch trên đầu là tử số nhé ạ. Mọi người giúp em với em đang cần gấp. cảm ơn mọi người
Ta có a + b + c = 0
<=> (a + b + c)2 = 0
<=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0
<=> a2 + b2 + c2 = -(2ab + 2bc +2ca)
(a + 2b)2 + (b + 2c)2 + (c + 2a)2
= a2 + 4ab + 4b2 + b2 + 4bc + 4c2 + c2 + 4ca + 4a2
= 5a2 + 5b2 + 5c2 + 4ab + 4bc + 4ca
= 5(a2 + b2 + c2) + 4ab + 4bc + 4ca
= 5[ - (2ab + 2bc +2ca)] + 4ab +4bc +4ca
= -10ab - 10bc - 10ca + 4ab + 4bc + 4ca
= -6(ab + bc + ca)
Lại có (a - 2b)2 + (b - 2c)2 + (c - 2a)2
= a2 - 4ab + 4b2 + b2 - 4bc + 4c2 + c2 - 4ca + 4a2
= 5a2 + 5b2 + 5c2 - 4ab - 4bc - 4ca
= 5(a2 + b2 +c2) - 4ab - 4bc - 4ca
= 5[- (2ab + 2bc +2ca)] - 4ab - 4bc - 4ca
= -10ab - 10bc - 10ca - 4ab - 4bc - 4ca = -14(ab + bc + ca)
Khi đó \(\frac{\left(a+2b\right)^2+\left(b+2c\right)^2+\left(c+2a\right)^2}{\left(a-2b\right)^2+\left(b-2c\right)^2+\left(c-2a\right)^2}=\frac{-6\left(ab+bc+ca\right)}{-14\left(ab+bc+ca\right)}=\frac{3}{7}\)
\(ĐK:x\ne-5\pm2\sqrt{5}\)
\(\frac{\left(-x+2\right)\left(2x+10\right)}{x^2+10x+5}=0\)
\(\Leftrightarrow\left(-x+2\right)\left(2x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+2=0\\2x+10=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-5\left(tm\right)\end{cases}}\)
Vậy ........
\(\left(x-1\right)\left(x+1\right)-x\left(x-2\right)=2x-1\)
\(x^2-1-x^2+2x=2x-1\)
\(2x-1=2x-1\)
\(0x=0\)( luôn đúng )
vậy pt vô số nghiệm
Ta có : \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=3ab+3bc+3ca\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ca\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
Ta có (a + b + c)2 = 3(ab + bc + ca)
<=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 3ab + 3bc + 3ca
<=> a2 + b2 + c2 - ab - bc - ca = 0
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Leftrightarrow a=b=c\) (đpcm)