Cho a = 2 mũ 13 nhân 5 mũ 8 nhân 10 hỏi a có bao nhiêu chữ số
Giải Giúp Mink Vs Ạ Mink Đg Cần Gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(x-8+32=68\)
\(x-8=68-32\)
\(x-8=36\)
\(x=36+8\)
\(x=44\)
_____
2. \(x+8+32=68\)
\(x+8=68-32\)
\(x+8=36\)
\(x=36-8\)
\(x=28\)
_____
3. \(98-x+34=43\)
\(98-x=43-34\)
\(98-x=9\)
\(x=98-9\)
\(x=89\)
_____
4. \(98+x-34=43\)
\(98+x=43+34\)
\(98+x=77\)
\(x=77-98\)
\(x=-21\)
_____
5. \(x:5:4=800\)
\(x:5=800.4\)
\(x:5=3200\)
\(x=3200.5\)
\(x=16000\)
_____
6. \(18+x=384:8\)
\(18+x=48\)
\(x=48-18\)
\(x=30\)
_____
7. \(\left(84,6-2\times x\right):3,02=5,1\)
\(84,6-2.x=5,1.3,02\)
\(84,6-2.x=15,402\)
\(2.x=84,6-15,402\)
\(2.x=69,198\)
\(x=69,198:2\)
\(x=34,599\)
_____
8. \(x\times5=120:6\)
\(x.5=20\)
\(x=20:5\)
\(x=4\)
_____
9. \(\left(15\times24-x\right):0,25=100:0,25\)
\(\left(15.24-x\right):0,25=400\)
\(15.24-x=400.0,25\)
\(15.24-x=100\)
\(360-x=100\)
\(x=360-100\)
\(x=260\)
1,x-8+32=68
=>x-8=68-32=36
=>x=36+8=42
2,x+8+32=68
=>x+8=68-32=36
=>x=36-8=28
3,98-x+34=43
=>98-x=43-34=9
=>x=98-9=89
4,98+x-34=43
=>98+x=43+34=77
=>x=77-98=-21
5,x:5:4=800
=>x:20=800
=>x=800x20=16000
6,18+x=384:8=48
=>x=48-18=30
7,(84,6-2x):3,02=5,1
=>84,6-2x=5,1x3,02=15,402
=>2x=84,6-15,402=69,198
=>x=69,198:2=34,599
8,5x=120:6=20
=>x=20:5=4
9,(15x24-x):0,25=100:0,25=400
=>360-x=400x0,25=100
=>x=360-100=260.
Ta có a = 213 . 58 . 10
= 28 . 25 . 58 . 10
= 108 . 10 . 32
= 109 . 32
= 1 000 000 000 . 32
= 32 000 000 000
Vậy a có 11 chữ số
\(\left(3x-15\right)\cdot3^7=3^8\\ \\ \Rightarrow3x-15=3^8:3^7\\ \\ \Rightarrow3x-15=3^{8-7}=3^1\\ \\ \Rightarrow3x-15=3\Rightarrow3x=3+15=18\\ \\ \Rightarrow x=18:3=6\)
\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)
\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)
\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)
Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)
\(\Rightarrow S+2^x-1=2^{x+2016}-1\)
\(\Rightarrow S=2^{x+2016}-2^x\)
\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
Sửa câu a
a)Ta có:
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)
\(A=39+...+3^{96}.39\)
\(A=39.\left(1+...+3^{96}\right)\)
Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13
Vậy A \(⋮\) 13
_________
b)Ta có:
\(B=5+5^2+5^3+...+5^{50}\)
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)
\(B=30+5^2.30+...+5^{48}.30\)
\(B=30.\left(1+5^2+...+5^{48}\right)\)
Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6
Vậy B \(⋮\) 6
a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)
=3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13
b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)
=5x6+...+549x6=6(5+..+549)⋮6.
\(...\Rightarrow\left[{}\begin{matrix}288:\left(x-3\right)^2-2=0\\x^2-169=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}288:\left(x-3\right)^2=2\\x^2=169\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=288:2\\x^2=13^2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^2=144=12^2\\x^2=13^2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=12\\x-3=-12\\x=13\\x=-13\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=15\\x=-9\\x=13\\x=-13\end{matrix}\right.\) \(\Rightarrow x\in\left\{-9;15;\pm13\right\}\)
\(3n+2⋮n-1\)
\(\Rightarrow3n+2-3\left(n-1\right)⋮n-1\)
\(\Rightarrow3n+2-3n+3⋮n-1\)
\(\Rightarrow5⋮n-1\)
\(\Rightarrow n-1\in\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{0;2;-4;6\right\}\left(n\in Z\right)\)
Số dư lớn nhất trong 1 phép chia bằng số chia -1
=> số dư lớn nhất trong phép chia trên = 5-1=4
Theo đề bài số dư = {2;4}
Với số dư = 2 thì thương là 2:2=1
=>x=5x1+2=7
Với số dư = 4 thì thương là 4:2=2
=> x=5x2+4=14
Theo đề :
\(x=5.r+2.r\)
mà \(2.r< 5\Rightarrow r\in\left\{1;2\right\}\Rightarrow x\in\left\{7;14\right\}\)
Ta có \(2^{13}.5^8.10\\ \\ =2^8.2^5.5^8.10\\ \\ =\left(2^8.5^8\right).2^5.10\\ \\ =10^8.10.32\\ \\ =10^9.32\\ \\ =32000000000\)⇒ \(2^{13}.5^8.10\) có 11 chữ số
\(a=2^{13}.5^8.10\)
\(a=2^8.2^5.5^8.10\)
\(a=\left(2^8.5^8\right).2^5.10\)
\(a=\left(2.5\right)^8.32.10\)
\(a=10^8.32.10\)
\(a=1000...0\left(8cs0\right).10.32\)
\(a=1000...0\left(9cs0\right).32\)
\(a=32000...0\left(9cs0\right)\)
\(\Rightarrow a\) có 11 chữ số