Cho stn n thỏa mãn n mũ 9012 có tận cùng là 9, tìm c/s tận cùng của n mũ 2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để olm giúp em nhá
(9989)69 = 996141 = (992)3070.99 = (\(\overline{..01}\))3070.99 = \(\overline{..99}\)
62021 = (65)404.6 = 7776404.6 = \(\overline{...76}.6\) = \(\overline{...56}\)
A=142022.162022=(14.16)2022=2242022= (2242)1001= \(\overline{...76}\)1001=\(\overline{...76}\)
\(@Ans\)
\(\downarrow\)
\(\text{a) 98 - 25,37 - 44,36}\)
\(=98+\left(-25,37\right)+\left(-44,36\right)\)
\(=98+\left[\left(-25,37\right)+\left(-44,36\right)\right]\)
\(=98+(-69,73)\)
\(=28,27\)
\(b)14.32.2+7.25.4+28.33\)
\(=\left(14.2\right).32+\left(7.4\right).25+28.33\)
\(=28.32+28.25+28.33\)
\(=28.\left(32+25+33\right)\)
\(=28.90\)
\(=2520\)
\(c)30.137.2+10.43.6-15.80.4\)
\(=\left(30.2\right).137+\left(10.6\right).43-\left(15.4\right).80\)
\(=60.137+60.43-60.80\)
\(=60.\left(137+43-80\right)\)
\(=60.100\)
\(=6000\)
\(d)126.15-26.14\)
\(=1890-364\)
\(=1526\)
\(\text{( Dấu "." là dấu nhân nhé )}\)
\(\text{Chúc bạn học tốt!!}\)
\(27.332+93.43+57.61+69.57\\ =27.332+93.43+57.\left(61+69\right)\\ =27.332+93.43+57.130\\ =8964+3999+7410=20373\\ 34.75+75.66-65.100\\ =\left(34+66\right).75-65.100\\ =100.75-65.100\\ =100.\left(75-65\right)\\ =100.10=1000\\ \left(456.11+912\right).37:13:74\\ =5928:13:\left(74:37\right)\\ =456:2=228\\ 6^2:4.3+2.5^2\\ =36:4.3+2.25\\ =9.3+50=27+50=77\\ 5.4^2-18:3^2\\ =5.16-18:9\\ =80-2=78\\\left[\left(315+372\right).3+\left(372+315\right).7\right]:\left(26.13+74.14\right)\\ =687.\left(3+7\right):\left(338+1036\right)\\ 687.10:1374\\ =6870:1374=5\\ 12:\left\{390:\left[500-\left(125+35.7\right)\right]\right\}\\ =12:\left[390:\left(500-370\right)\right]\\ =12:\left(390:130\right)=12:3=4\\ 192000-\left(1500.2+1800.3+1800.2:3\right)\\ =192000-\left(3000+5400+1200\right)\\ =192000-9600=182400\)
Số nguyên tố là số chỉ có ước là 1 và chính nó.
Vậy không có số nguyên tố nào chia hết cho 24, 80 và 180.
Gọi số cần tìm là \(x\) ( \(x\in\)N; 100 ≤ \(x\) ≤ 999)
Theo bài ra ta có \(x\) có dạng: \(x\) = 75k + k ( k \(\in\) N)
⇒ \(x\) = 76k ⇒ k = \(x:76\) ⇒ \(\dfrac{100}{76}\) ≤ k ≤ \(\dfrac{999}{76}\)
⇒ k \(\in\) { 2; 3; 4;...;13}
Để \(x\) lớn nhất thì k phải lớn nhất ⇒ k = 13 ⇒ \(x\) = 76 \(\times\) 13 = 988
Vậy số thỏa mãn đề bài là 988
Thử lại ta có 988 : 75 = 13 dư 13 (ok)
b, Gọi số chia là \(x\) ( \(x\) \(\in\) N; \(x\) > 9)
Theo bài ra ta có: 86 - 9 ⋮ \(x\) ⇒ 77 ⋮ \(x\)
⇒ \(x\) \(\in\) Ư(77) = { 1; 7; 11}
vì \(x\) > 9 ⇒ \(x\) = 11
Vậy số chia là 11
Thương là: (86 - 9 ) : 11 = 7
Kết luận số chia là 11; thương là 7
Thử lại ta có: 86 : 11 = 7 dư 9 (ok)
Theo đề \(A\) có \(N\) chữ số, \(A^5\) có \(M\) chữ số
Nên \(\left[{}\begin{matrix}M=N\\M=N+1\end{matrix}\right.\) (chữ số)
\(\Rightarrow\left[{}\begin{matrix}M+2N=N+2N=3N=169\\M+2N=N+2\left(N+1\right)=3N+2=169\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}N=169:3\left(loại\right)\\N=167:3\left(loại\right)\end{matrix}\right.\) (Vì \(N\inℕ\))
Vậy không tồn tại \(M+2N=169\) như theo đề bài.
\(UCLN\left(28;36\right)=4\)
Số bút đỏ trong 1 hộp : \(28:4=7\) (bút)
Số bút vàng trong 1 hộp : \(36:4=9\) (bút)
Vậy đỏ : 7 bút; vàng : 9 bút
Số tự nhiên n thỏa mãn \(n^k\left(k\inℕ^∗\right)\) có tận cùng là 9 khi và chỉ khi \(n\) có chữ số tận cùng là 3, 7 hoặc 9.
TH1: Nếu \(n\) có chữ số tận cùng là \(3\) thì ta có nhận xét là \(n^{4k}\) có chữ số tận cùng là 1 với mọi số tự nhiên \(k\). Thật vậy, với \(k=0\) thì \(n^0=1\) có tận cùng là 9. Giả sử khẳng định đúng đến \(k=l\). Với \(k=l+1\) thì \(n^{4\left(l+1\right)}=n^{4l+4}=n^4.n^{4l}=\overline{A1}.\overline{B1}\) có chữ số tận cùng là 1. Vậy khẳng định được chứng minh. Do đó, \(n^{9012}=n^{4.2253}\) có chữ số tận cùng là 1, không thỏa ycbt.
TH2: \(n\) có chữ số tận cùng là 7 thì làm tương tự với TH1, \(n^{4k}\) luôn có chữ số tận cùng là 7 nên không thỏa ycbt.
TH3: \(n\) có chữ số tận cùng là 9 thì \(n^{2k}\) luôn có chữ số tận cùng là 1. Như vậy, không thể có số tự nhiên \(n\) nào thỏa mãn ycbt.