K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

a, 1-2+3-4+...+99-100

= (1-2)+(3-4)+...+(99-100)

= -1 + (-1) +...+ (-1)

= -1 x 50

= -50

b, 1+2-3-4+5+6-...+97+98-99-100

= (1+2-3-4) + (5+6-7-8) + ... + (97+98-99-100)

= -4 +( -4) + .... + (-4)

= -4 x 25

= -100

25 tháng 2 2021

Gọi tọa độ điểm MMNN lần lượt là M(x1;y1), N(x2;y2)M(x1;y1), N(x2;y2).

Hệ số góc tiếp tuyến của (C)(C) tại MM và NN lần lượt là

k1=y(x1)=3x12+6x11k1=y′(x1)=−3x12+6x1−1k2=y(x2)=3x22+6x21k2=y′(x2)=−3x22+6x2−1

Để tiếp tuyến của (C)(C) tại MM và NN luôn song song với nhau điều kiện là

{k1=k2x1x2{k1=k2x1≠x2 {(x1x2)[3(x1+x2)+6]=0x1x2⇔{(x1−x2)[−3(x1+x2)+6]=0x1≠x2x1+x2=2⇔x1+x2=2.

Ta có:y1+y2=(x1+x2)[(x1+x2)23x1x2]+3[(x1+x2)22x1x2](x1+x2)+8y1+y2=−(x1+x2)[(x1+x2)2−3x1x2]+3[(x1+x2)2−2x1x2]−(x1+x2)+8

Do x1+x2=2x1+x2=2 nên y1+y2=2(43x1x2)+3(42x1x2)+8=10y1+y2=−2(4−3x1x2)+3(4−2x1x2)+8=10.

Trung điểm của đoạn MNMN là I(1;5)I(1;5). Vậy đường thẳng MNMN luôn đi qua điểm cố định I(1;5)I(1;5).

25 tháng 2 2021

Ta có \(y'=-3x^2+6x-1\Rightarrow y^n=-6x+6;y^n=0\Leftrightarrow x=1\Rightarrow I\left(1;5\right)\) là điểm uốn của đồ thị (C)

G/s M (xM;yM); N(xN;yN) là 2 điểm di động trên (C)

Tiếp tuyển của (C) tại M,N song song với nhau

=> y'(xM)=y'(xN)

\(\Leftrightarrow-3x^2_M+6x_M-1=-3x_N^2+6x_N-1\)

\(\Leftrightarrow-3\left(x_M-x_N\right)\left(x_N+x_M\right)+6\left(x_M-x_N\right)=0\)

\(\Leftrightarrow\frac{x_M+x_N}{2}=1\left(x_M\ne x_N\right)\)=> I là trung điểm MN

Vậy đường thẳng MN luôn đi qua điểm I cố định

26 tháng 2 2021

em gửi hình ảnh

11 tháng 5 2021

y=(2x+3)21.

Đường thẳng y = ax+by=ax+b là tiếp tuyến của đường cong (C)(C) khi hệ phương trình sau có nghiệm:

\left\{\begin{aligned} &\dfrac{x+2}{2x+3} = ax+b\\ &a = \dfrac{-1}{(2x+3)^2} (1)\\ \end{aligned}\right.2x+3x+2=ax+ba=(2x+3)21(1)

Mà tiếp tuyến của (C)(C) cắt trục hoành tại AA, cắt trục tung tại BB sao cho AOBAOB là tam giác vuông cân tại OO nên a = -1a=1 và b \ne 0 (2).b=0(2).

Từ (1)(1) và (2)(2) suy ra \left[\begin{aligned} &2x+3=1\\ &2x+3=-1\\ \end{aligned}\right. \Leftrightarrow \left[\begin{aligned} &x = -1\\ &x = -2\\ \end{aligned}\right. \Leftrightarrow \left[\begin{aligned} &b = 0 (l)\\ &b = -2 (tm) \end{aligned}\right. \Rightarrow a+b = -3.[2x+3=12x+3=1[x=1x=2[b=0(l)b=2(tm)a+b=3.

26 tháng 2 2021

Cho hàm số y=f(x)y=f(x)có đạo hàm liên tục trên khoảng K và có đồ thị là đường cong (C), phương trình tiếp tuyến của (C) tại điểm M(a,f(a)),(a∈K)M(a,f(a)),(a∈K) là:

y=f′(a)(x−a)+f(a).

 

y=x3.
8 tháng 4 2021

y=-x-3

8 tháng 4 2021

y=-6x-3

11 tháng 5 2021

Gọi N(x_0;y_0)N(x0;y0) là tiếp điểm của tiếp tuyến đã cho.

Phương trình tiếp tuyến dd có dạng: y = (4x_0^3+2x_0)(x-x_0)+x_0^4+x_0^2+1y=(4x03+2x0)(xx0)+x04+x02+1.

M \in dMd nên 3 = (4x_0^3+2x_0)(-1-x_0)+x_0^4+x_0^2+1 \Leftrightarrow 3x_0^4+4x_0^3+x_0^2+2x_0+2=03=(4x03+2x0)(1x0)+x04+x02+13x04+4x03+x02+2x0+2=0

\Leftrightarrow (x_0+1)^2(3x_0^2-2x_0+2) = 0 \Leftrightarrow x_0 = -1 \Rightarrow y_0 = 3(x0+1)2(3x022x0+2)=0x0=1y0=3 và y'(x_0)=-6y(x0)=6.

Phương trình tiếp tuyến là y = -6x-3.y=6x3.

26 tháng 2 2021

Xét tiếp tuyênd với (C) tại điểm có hoành độ x0 bất kì trên (C) 

Khi đó hệ số góc của tiếp tuyến đó là: y'=-x20-4x0-3=1-(x0+2) =< 1 với mọi x

8 tháng 4 2021

k=1

8 tháng 4 2021

X=1 hoặc x=-1

6 tháng 5 2021

TXĐ : R 

y' =3x- 3 

tiếp tuyến d song song với ox nếu hệ số góc bằng 0 nên ta có phương trình 0 = 3x2 -3 => x = 1 hoặc x= -1

25 tháng 2 2021

ko biết

25 tháng 2 2021
Giải cho em một bài tập Ngữ Văn trang 56 với ah
24 tháng 2 2021

xét m=1 và m=-1 thì pt luôn có nghiệm
xét m#1 và m#-1
đặt f(x)=
(1−m2)x5−3x−1(1−m2)x5−3x−1
f(x)liên tục trên R nên f(x) lt trên [-1,0]
f(-1)=
m2+1m2+1>0
f(0)=-1
f(-1)*f(0)<0 suyra ( đpcm ) .

24 tháng 2 2021
Xét m=1 và m=-1 thì pt luôn có nghiệmxét m#1 và m#-1đặt f(x)=(1−m2)x5−3x−1(1−m2)x5−3x−1f(x)liên tục trên R nên f(x) lt trên [-1,0]f(-1)=m2+1m2+1>0f(0)=-1f(-1)*f(0)<0 suyra ( đpcm ) .