K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 3 2021

Cre:Hangbich

O A B C D E K

Gọi \(BK\text{∩}\left(O\right)=E\rightarrow\widehat{KCE}=\widehat{KBC}=\widehat{KBA}=\widehat{ACE}\)

\(\rightarrow\Delta CDK\) Cân tại K

\(\rightarrow DE=EK=x\)

Ta có \(\Delta KEC\text{∼}\Delta KCB\left(g.g\right)\rightarrow\frac{KE}{KC}=\frac{KC}{KB}\)

\(\rightarrow KC^2=KE.KB\)

\(\rightarrow KB^2-BC^2=KE.KB\)

\(\rightarrow\left(BD+2x\right)^2-5^2=x.\left(BD+2x\right)\)

\(\rightarrow\left(4+2x\right)^2-25=x.\left(4+2x\right)\)

\(\rightarrow4x^2+16x+16-25=4x+2x^2\)

\(\rightarrow2x^2+12x-9=0\)

\(\rightarrow x=\frac{-6+3\sqrt{6}}{2}\)

\(\Rightarrow BK=BD+2x=-2+3\sqrt{6}\)

hangbich chuyên gia bên hoidap nè

15 tháng 12 2021

a) Vì AD là tia phân giác của góc CAB⇒góc CAH= góc HAB

mà góc CAH là góc nội tiếp chắn cung CH

      góc HAB là góc nội tiếp chắn cung HB

⇒ cung CH=cung HB

Ta có: góc HBC là góc nội tiếp chắn cung CH

          góc HBD là góc tạo bởi tia tiếp tuyến và dây cung chắn cung HB

⇒ góc HBC = góc HBD

lại có: góc AHB chắn nửa (O)⇒góc AHB=90o⇒AH\(\perp\)HB

Xét ΔFBD có: BH là đường cao đồng thời là đường phân giác

⇒ΔFBD cân tại B⇒FB=DB

Và BH là đường trung tuyến ⇒FH=FD

b)Ta có: góc ACB là góc nội tiếp chắn nửa (O)

⇒ góc ACB= 90o

Xét ΔABM vuông tại B có BC là đường cao ứng với cạnh huyền AM 

AC.AM=AB2 ( hệ thức lượng trong Δ vuông ) (1)

Xét ΔABD vuông tại B có BH là đường cao ứng với cạnh huyền AD

AH.HD=AB2 ( hệ thức lượng trong Δ vuông ) (2)

Từ(1) và(2)⇒AC.AM=AH.HD

15 tháng 12 2021

a)  vì góc CAH= góc HAB( AH là p/g của góc CAB)

=> cung CH= cung BH

Ta có : sđ góc CBH=1/2 sđ cung CH( góc nt chắn cung CH) => góc CBH=1/2 cung BH (1)

          sđ góc HBM=1/2 sđ cung BH ( góc tạo bởi tia tiếp tuyến và dây cung chắn cung BH) (2)

Từ 1 và 2 => góc CBH= góc HBM => CH là p/g của góc FBD

xét △ BDF có: CH là p/g của góc FBD

Mà BH còn là đường trung trực của FD( góc ABH chắn nửa đường tròn)

=>△BDF cân tại B => FB=DB : HF=HD

b) xét △ABM vuông tại B có: AC.AM=AB bình( hệ thức lượng trong tam giác vuông) (3)

          △ABD vuông tại B có: AH.AD=AB bình( hệ thức lượng trong tam giác vuông) (4)

từ 3 và 4 => AC.AM=AH.AD_đpcm

 

15 tháng 12 2021

có góc AQB= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O) Hay góc AQP=90 độ => góc QAP= 90 độ- góc QPA=90 độ-1/2sđ cung AP

có góc APC= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O1)=> góc PAC=90 độ - góc PCA=90 độ - 1/2sđ cung AP

Vì vậy góc QAP= góc PAC hay AP là tia phân giác của  góc QAB

15 tháng 12 2021

Ta có: góc BQA =90o (góc nội tiếp chắn nửa (O))

Xét Δ PQA vuông tại Q có: góc QAP + góc QPA =90o ⇒ góc QAP=90o- góc QPA 

Mà góc QPA =1/2 sđ cung PA ( góc QPA là góc tạo bởi tia tiếp tuyến cà dây cung chắn cung AP của (O1))

⇒góc QAP=90o- 1/2 sđ cung PA (1)

Xét ΔCPA vuông tại P ( vì góc CPA là góc nội tiếp chắn nửa (O1)) có

góc PCA + góc PAC =90o⇒góc PAC =90o-góc PCA 

mà góc PCA =1/2 sđ cung PA ( góc nội tiếp chắn cung PA )

⇒góc PAC= 90o-1/2 sđ cung PA (2)

Từ (1) và (2) ⇒ góc QAP=góc PAC ⇒ AP là tia phân giác của góc QAB

 

15 tháng 12 2021

ta có : Góc CAB = GÓc PQG ( 2 góc đối đỉnh ) . theo tính chất của góc nt , taco : Góc CBA = 1/2 cung AC . Góc APQ = 1/2 sd AQ(1) . theo t/c của góc tạo bởi tia tiếp tuyến và dây cung ta có ; GÓC CBA = 1/2 cung AC . APQ + 1/2 sđ AQ ( 2) . TỪ (1) , ( 2 ) => GÓC CBA = APQ . mà 2 góc này ở vị trí soletrong = > BC song song với QP

15 tháng 12 2021

xAC=QAy(hai góc đối đỉnh)

theo tính chất của 2 góc được tạo bởi tia tiếp tuyến

=> xAC=1/2sđ cung AC,QAy=1/2sđ cungAQ(1)

theo tính chất của góc nội tiếp,ta có

=> ABC=1/2 sđ cung AC,APQ=1/2sđ cung AQ(2)

từ (1),(2)=> ABC=APQ

=> QP//BC

20 tháng 3 2021

a)\(\Delta\)=(2m+3)^2-4.(m^2-1)

        =12m+13

=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)

Hay 12m+13>_0

<=>m>_-13/12

b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có

1^2-(2m+3)1+m^2-1=0

<=>m^2-2m-3=0

<=>m=-1 hoặc m=3

Áp dụng hệ thức Vi-ét ta có

x1.x2=m^2-1

=>x2=m^2-1

+)m=-1=>x2=0

+)m=3=>x2=8

c)Theo câu a ta có 

Phương trình có 2 nghiệm phân biệt<=>m>_-13/12

Áp dụng hệ thức Vi-ét ta có

x1+x2=2m+3 và x1.x2=m^2-1 (1)

Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2

Thay (1) vào A ta có

A=(2m+3)^2-2(m^2-1)

=4m^2+12m+11

=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2

Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2

d)Câu này dễ b tự lm nha

15 tháng 12 2021

ta có góc ACH=gócABC(vì cùng phụ với góc CAB)

 

MCA=ABC(vì cùng chắn cung AC)

=> góc MCA=ACH hay AC là tia phân giác của góc MCH

20 tháng 3 2021

\(\sqrt{3x^2+5x+1}-\sqrt{3x^2+5x-7}=0\)

\(\Leftrightarrow\sqrt{3x^2+5x+1}=\sqrt{3x^2+5x-7}\)

ĐKXĐ : ... 

Bình phương hai vế

\(\Leftrightarrow3x^2+5x+1=3x^2+5x-7\)

\(\Leftrightarrow3x^2+5x+1-3x^2-5x+7=0\)

\(\Leftrightarrow0x+8=0\)

\(\Leftrightarrow0=8\left(voli\right)\)

Vậy phương trình vô nghiệm 

20 tháng 3 2021

2( x2 - 2x )2 + 3x2 - 6x + 1 = 0

<=> 2( x2 - 2x )2 + 3( x2 - 2x ) + 1 = 0

Đặt t = x2 - 2x ta được phương trình bậc 2 ẩn t :

2t2 + 3t + 1 = 0 (*)

Dễ thấy (*) có a - b + c = 2 - 3 + 1 = 0 nên có hai nghiệm phân biệt t1 = -1 ; t2 = -c/a = -1/2

=> x2 - 2x = -1 hoặc x2 - 2x = -1/2

<=> x2 - 2x + 1 = 0 hoặc x2 - 2x + 1/2 = 0

+) x2 - 2x + 1 = 0

Δ = b2 - 4ac = 4 - 4 = 0

Δ = 0 nên pt có nghiệm kép x1 = x2 = -b/2a = 1

+) x2 - 2x + 1/2 = 0

Δ = b2 - 4ac = 4 - 2 = 2

Δ > 0 nên pt có hai nghiệm phân biệt : \(x_1=\frac{-2+\sqrt{2}}{2};x_2=\frac{-2-\sqrt{2}}{2}\)

Vậy phương trình đã cho có ba nghiệm \(x_1=\frac{-2+\sqrt{2}}{2};x_2=\frac{-2-\sqrt{2}}{2};x_3=1\)