Cho tam giác $ABC$ vuông ở $A$ nội tiếp đường tròn tâm $O$ đường kính $5cm$. Tiếp tuyến với đường tròn tại $C$ cắt tia phân giác của góc $ABC$ tại $K$. $BK$ cắt $AC$ tại $D$ và $BD = 4cm$. Tính độ dài $BK$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì AD là tia phân giác của góc CAB⇒góc CAH= góc HAB
mà góc CAH là góc nội tiếp chắn cung CH
góc HAB là góc nội tiếp chắn cung HB
⇒ cung CH=cung HB
Ta có: góc HBC là góc nội tiếp chắn cung CH
góc HBD là góc tạo bởi tia tiếp tuyến và dây cung chắn cung HB
⇒ góc HBC = góc HBD
lại có: góc AHB chắn nửa (O)⇒góc AHB=90o⇒AH\(\perp\)HB
Xét ΔFBD có: BH là đường cao đồng thời là đường phân giác
⇒ΔFBD cân tại B⇒FB=DB
Và BH là đường trung tuyến ⇒FH=FD
b)Ta có: góc ACB là góc nội tiếp chắn nửa (O)
⇒ góc ACB= 90o
Xét ΔABM vuông tại B có BC là đường cao ứng với cạnh huyền AM
AC.AM=AB2 ( hệ thức lượng trong Δ vuông ) (1)
Xét ΔABD vuông tại B có BH là đường cao ứng với cạnh huyền AD
AH.HD=AB2 ( hệ thức lượng trong Δ vuông ) (2)
Từ(1) và(2)⇒AC.AM=AH.HD
a) vì góc CAH= góc HAB( AH là p/g của góc CAB)
=> cung CH= cung BH
Ta có : sđ góc CBH=1/2 sđ cung CH( góc nt chắn cung CH) => góc CBH=1/2 cung BH (1)
sđ góc HBM=1/2 sđ cung BH ( góc tạo bởi tia tiếp tuyến và dây cung chắn cung BH) (2)
Từ 1 và 2 => góc CBH= góc HBM => CH là p/g của góc FBD
xét △ BDF có: CH là p/g của góc FBD
Mà BH còn là đường trung trực của FD( góc ABH chắn nửa đường tròn)
=>△BDF cân tại B => FB=DB : HF=HD
b) xét △ABM vuông tại B có: AC.AM=AB bình( hệ thức lượng trong tam giác vuông) (3)
△ABD vuông tại B có: AH.AD=AB bình( hệ thức lượng trong tam giác vuông) (4)
từ 3 và 4 => AC.AM=AH.AD_đpcm
có góc AQB= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O) Hay góc AQP=90 độ => góc QAP= 90 độ- góc QPA=90 độ-1/2sđ cung AP
có góc APC= 90 độ( góc nội tiếp chắn nửa đường tròn tâm O1)=> góc PAC=90 độ - góc PCA=90 độ - 1/2sđ cung AP
Vì vậy góc QAP= góc PAC hay AP là tia phân giác của góc QAB
Ta có: góc BQA =90o (góc nội tiếp chắn nửa (O))
Xét Δ PQA vuông tại Q có: góc QAP + góc QPA =90o ⇒ góc QAP=90o- góc QPA
Mà góc QPA =1/2 sđ cung PA ( góc QPA là góc tạo bởi tia tiếp tuyến cà dây cung chắn cung AP của (O1))
⇒góc QAP=90o- 1/2 sđ cung PA (1)
Xét ΔCPA vuông tại P ( vì góc CPA là góc nội tiếp chắn nửa (O1)) có
góc PCA + góc PAC =90o⇒góc PAC =90o-góc PCA
mà góc PCA =1/2 sđ cung PA ( góc nội tiếp chắn cung PA )
⇒góc PAC= 90o-1/2 sđ cung PA (2)
Từ (1) và (2) ⇒ góc QAP=góc PAC ⇒ AP là tia phân giác của góc QAB
ta có : Góc CAB = GÓc PQG ( 2 góc đối đỉnh ) . theo tính chất của góc nt , taco : Góc CBA = 1/2 cung AC . Góc APQ = 1/2 sd AQ(1) . theo t/c của góc tạo bởi tia tiếp tuyến và dây cung ta có ; GÓC CBA = 1/2 cung AC . APQ + 1/2 sđ AQ ( 2) . TỪ (1) , ( 2 ) => GÓC CBA = APQ . mà 2 góc này ở vị trí soletrong = > BC song song với QP
xAC=QAy(hai góc đối đỉnh)
theo tính chất của 2 góc được tạo bởi tia tiếp tuyến
=> xAC=1/2sđ cung AC,QAy=1/2sđ cungAQ(1)
theo tính chất của góc nội tiếp,ta có
=> ABC=1/2 sđ cung AC,APQ=1/2sđ cung AQ(2)
từ (1),(2)=> ABC=APQ
=> QP//BC
a)\(\Delta\)=(2m+3)^2-4.(m^2-1)
=12m+13
=>Phương trình có 2 nghiệm phân biệt<=>\(\Delta\ge0\)
Hay 12m+13>_0
<=>m>_-13/12
b)Vì phương trình có nghiệm x1=1 nên thay x=1 vào phương trình ta có
1^2-(2m+3)1+m^2-1=0
<=>m^2-2m-3=0
<=>m=-1 hoặc m=3
Áp dụng hệ thức Vi-ét ta có
x1.x2=m^2-1
=>x2=m^2-1
+)m=-1=>x2=0
+)m=3=>x2=8
c)Theo câu a ta có
Phương trình có 2 nghiệm phân biệt<=>m>_-13/12
Áp dụng hệ thức Vi-ét ta có
x1+x2=2m+3 và x1.x2=m^2-1 (1)
Đặt A= x1^2+x2^2=(x1+x2)^2-2.x1.x2
Thay (1) vào A ta có
A=(2m+3)^2-2(m^2-1)
=4m^2+12m+11
=(2m+3)^2+2>_2 Hay GTNN của x1^2+x2^2 là 2
Dấu "=" xảy ra <=>2m+3=0<=>m=-3/2
d)Câu này dễ b tự lm nha
ta có góc ACH=gócABC(vì cùng phụ với góc CAB)
MCA=ABC(vì cùng chắn cung AC)
=> góc MCA=ACH hay AC là tia phân giác của góc MCH
\(\sqrt{3x^2+5x+1}-\sqrt{3x^2+5x-7}=0\)
\(\Leftrightarrow\sqrt{3x^2+5x+1}=\sqrt{3x^2+5x-7}\)
ĐKXĐ : ...
Bình phương hai vế
\(\Leftrightarrow3x^2+5x+1=3x^2+5x-7\)
\(\Leftrightarrow3x^2+5x+1-3x^2-5x+7=0\)
\(\Leftrightarrow0x+8=0\)
\(\Leftrightarrow0=8\left(voli\right)\)
Vậy phương trình vô nghiệm
2( x2 - 2x )2 + 3x2 - 6x + 1 = 0
<=> 2( x2 - 2x )2 + 3( x2 - 2x ) + 1 = 0
Đặt t = x2 - 2x ta được phương trình bậc 2 ẩn t :
2t2 + 3t + 1 = 0 (*)
Dễ thấy (*) có a - b + c = 2 - 3 + 1 = 0 nên có hai nghiệm phân biệt t1 = -1 ; t2 = -c/a = -1/2
=> x2 - 2x = -1 hoặc x2 - 2x = -1/2
<=> x2 - 2x + 1 = 0 hoặc x2 - 2x + 1/2 = 0
+) x2 - 2x + 1 = 0
Δ = b2 - 4ac = 4 - 4 = 0
Δ = 0 nên pt có nghiệm kép x1 = x2 = -b/2a = 1
+) x2 - 2x + 1/2 = 0
Δ = b2 - 4ac = 4 - 2 = 2
Δ > 0 nên pt có hai nghiệm phân biệt : \(x_1=\frac{-2+\sqrt{2}}{2};x_2=\frac{-2-\sqrt{2}}{2}\)
Vậy phương trình đã cho có ba nghiệm \(x_1=\frac{-2+\sqrt{2}}{2};x_2=\frac{-2-\sqrt{2}}{2};x_3=1\)
Cre:Hangbich
Gọi \(BK\text{∩}\left(O\right)=E\rightarrow\widehat{KCE}=\widehat{KBC}=\widehat{KBA}=\widehat{ACE}\)
\(\rightarrow\Delta CDK\) Cân tại K
\(\rightarrow DE=EK=x\)
Ta có \(\Delta KEC\text{∼}\Delta KCB\left(g.g\right)\rightarrow\frac{KE}{KC}=\frac{KC}{KB}\)
\(\rightarrow KC^2=KE.KB\)
\(\rightarrow KB^2-BC^2=KE.KB\)
\(\rightarrow\left(BD+2x\right)^2-5^2=x.\left(BD+2x\right)\)
\(\rightarrow\left(4+2x\right)^2-25=x.\left(4+2x\right)\)
\(\rightarrow4x^2+16x+16-25=4x+2x^2\)
\(\rightarrow2x^2+12x-9=0\)
\(\rightarrow x=\frac{-6+3\sqrt{6}}{2}\)
\(\Rightarrow BK=BD+2x=-2+3\sqrt{6}\)
hangbich chuyên gia bên hoidap nè