cho Δ ABC vuông tại A (AB<AC), có dường cao AH ( H ϵ BC)
a) chứng minh Δ ABC đồng dạng với ΔHBA
b) vẽ BD là tia phân giác trong ( D ϵ AC ) cắt AH tại E. C/M : BE/BD=DA/DC
( VẼ HÌNH GIÚP EM VỚI Ạ )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a: Xét ΔAID vuông tại A và ΔDIK vuông tại D có
\(\widehat{AID}\) chung
Do đó: ΔAID~ΔDIK
=>\(\dfrac{IA}{ID}=\dfrac{ID}{IK}\)
=>\(ID^2=IA\cdot IK\)
b: Xét ΔADI vuông tại A và ΔAKD vuông tại A có
\(\widehat{ADI}=\widehat{AKD}\left(=90^0-\widehat{ADK}\right)\)
Do đó: ΔADI~ΔAKD
=>\(\dfrac{AD}{AK}=\dfrac{AI}{AD}\)
=>\(AD^2=AK\cdot AI\)
c: Xét ΔDEA vuông tại E và ΔDAI vuông tại A có
\(\widehat{EDA}\) chung
Do đó: ΔDEA~ΔDAI
=>\(\dfrac{DE}{DA}=\dfrac{DA}{DI}\)
=>\(DE\cdot DI=DA^2\left(1\right)\)
Xét ΔDFA vuông tại F và ΔDAK vuông tại A có
\(\widehat{FDA}\) chung
Do đó: ΔDFA~ΔDAK
=>\(\dfrac{DF}{DA}=\dfrac{DA}{DK}\)
=>\(DF\cdot DK=DA^2\left(2\right)\)
Từ (1),(2) suy ra \(DE\cdot DI=DF\cdot DK\)
d: DE*DI=DF*DK
=>\(\dfrac{DE}{DK}=\dfrac{DF}{DI}\)
Xét ΔDEF vuông tại D và ΔDKI vuông tại D có
\(\dfrac{DE}{DK}=\dfrac{DF}{DI}\)
DO đó: ΔDEF~ΔDKI
a) 6x - 6 = 2x + 10
6x - 2x = 10 + 6
4x = 16
x = 16 : 4
x = 4
Vậy S = {4}
b) Hệ số góc của đường thẳng y = 2x + 1 là 2
Do hệ số góc là 2 > 0 nên góc tạo bởi (d) và trục Ox là góc nhọn
S(km) | V(km/h) | t(giờ) | |
xe máy | 40.x | 40 | x |
ô tô | 60.x | 60 | x |
đổi 20p = 1/5 giờ
pt:
40.x + 60.x = 120 - 120.1/5
Gọi thời gian kể từ ô tô xuất phát đến lúc hai xe gặp nhau là x(giờ)
(ĐK: x>0)
Sau 20p=1/3 giờ thì xe máy đi được: \(40\cdot\dfrac{1}{3}=\dfrac{40}{3}\left(km\right)\)
Độ dài quãng đường còn lại là:
\(120-\dfrac{40}{3}=\dfrac{320}{3}\left(km\right)\)
Do đó, ta có phương trình:
60x+40x=320/3
=>100x=320/3
=>\(x=\dfrac{320}{3}:100=\dfrac{320}{300}=\dfrac{16}{15}\left(nhận\right)\)
Vậy: Sau 16/15h kể từ ô tô xuất phát thì hai xe gặp nhau
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)
=>\(AB^2=BH\cdot BC\)
b: xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC~ΔHAC
=>\(\dfrac{CA}{CH}=\dfrac{CB}{CA}\)
=>\(CA^2=CH\cdot CB\)
c: ΔABC~ΔHAC
ΔABC~ΔHBA
Do đó: ΔHAC~ΔHBA
=>\(\dfrac{HA}{HB}=\dfrac{HC}{HA}\)
=>\(HA^2=HB\cdot HC\)
d: \(\dfrac{1}{AH^2}=\dfrac{1}{HB\cdot HC}\)
\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BH\cdot BC}+\dfrac{1}{CH\cdot BC}\)
\(=\dfrac{1}{BC}\left(\dfrac{1}{BH}+\dfrac{1}{CH}\right)=\dfrac{1}{BC}\cdot\dfrac{BC}{BH\cdot CH}=\dfrac{1}{BH\cdot CH}\)
Do đó: \(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)
a: Xét ΔBAD và ΔBCE có
\(\widehat{BAD}=\widehat{BCE}\left(=90^0-\widehat{HAC}\right)\)
Do đó: ΔBAD~ΔBCE
Xét ΔBHD vuông tại H và ΔBAE vuông tại A có
\(\widehat{HBD}=\widehat{ABE}\)
Do đó: ΔBHD~ΔBAE
c: ΔBAD~ΔBCE
=>\(\dfrac{AD}{CE}=\dfrac{BD}{BE}\left(1\right)\)
ΔBHD~ΔBAE
=>\(\dfrac{HD}{AE}=\dfrac{BD}{BE}\left(2\right)\)
Từ (1),(2) suy ra \(\dfrac{AD}{CE}=\dfrac{HD}{AE}\)
=>\(\dfrac{AD}{DH}=\dfrac{CE}{AE}\)
=>\(\dfrac{HD}{DA}=\dfrac{EA}{EC}\)
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{HBA}\) chung
Do đó: ΔBHA~ΔBAC
=>\(\dfrac{BH}{BA}=\dfrac{BA}{BC}\)
=>\(\dfrac{BH}{3}=\dfrac{3}{5}\)
=>BH=9/5=1,8(cm)
BH+HC=BC
=>HC+1.8=5
=>HC=3,2(cm)
Đề bài thiếu rồi em. Tổ đã hoàn thành trước kế hoạch bao nhiêu ngày?
a: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔHBA~ΔHAC
b: Xét ΔPKI vuông tại K và ΔPHC vuông tại H có
\(\widehat{KPI}\) chung
Do đó: ΔPKI~ΔPHC
=>\(\dfrac{PK}{PH}=\dfrac{PI}{PC}\)
=>\(PK\cdot PC=PI\cdot PH\)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
b: XétΔBAD vuông tại A và ΔBHE vuông tại H có
\(\widehat{ABD}=\widehat{HBE}\)
Do đó: ΔBAD~ΔBHE
=>\(\dfrac{BD}{BE}=\dfrac{AD}{HE}\)
=>\(\dfrac{BE}{BD}=\dfrac{EH}{AD}\)(1)
\(\widehat{ADE}+\widehat{ABD}=90^0\)(ΔABD vuông tại A)
\(\widehat{HEB}+\widehat{DBC}=90^0\)(ΔHBE vuông tại H)
mà \(\widehat{ABD}=\widehat{DBC}\)
nên \(\widehat{ADE}=\widehat{HEB}\)
=>\(\widehat{ADE}=\widehat{AED}\)
=>AD=AE(2)
Từ (1),(2) suy ra \(\dfrac{BE}{BD}=\dfrac{EH}{AD}=\dfrac{EH}{AE}\left(3\right)\)
Xét ΔBHA có BE là phân giác
nên \(\dfrac{EH}{AE}=\dfrac{BH}{BA}\left(4\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{DC}=\dfrac{BA}{BC}\left(5\right)\)
ΔABC~ΔHBA
=>\(\dfrac{BH}{BA}=\dfrac{BC}{BA}\left(6\right)\)
Từ (4),(5),(6) suy ra \(\dfrac{EH}{AE}=\dfrac{AD}{DC}\)
=>\(\dfrac{BE}{BD}=\dfrac{DA}{DC}\)