Tìm GTLN của \(\frac{x}{\left(x+10\right)^2}\)
Giúp mik vs T T !!! Cho 2 tick lun nek
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3=\)
\(=\left(a^2+b^2\right)\left(a^4-a^2b^2+b^4\right)=1.\left(\left(a^2+b^2\right)^2-3a^2b^2\right)\)
\(=1-3a^2b^2\le1\)
vậy GTNN là 1
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2-2ab\ge0\Rightarrow2ab\le1\)(*)
\(a^6+b^6=\left(a^2\right)^{^3}+\left(b^2\right)^{^3}=\left(a^2+b^2\right)^{^3}-3a^2b^2\left(a^2+b^2\right)=1-3\left(ab\right)^2\)(**)
(*)&(**)\(a^6+b^6\ge1-3\left(\frac{1}{2}\right)^2=1-\frac{3}{4}=\frac{1}{4}\) đẳng thức khi \(a=b=+-\frac{\sqrt{2}}{2}\)
,các cặp số nguyên(x,y)là:(1,2);(24,29);(12,14);(56,47);(36;37)
Ta có
x2 + y2 - xy = 8
<=> 2x2 + 2y2 - 2xy = 16
<=> x2 + y2 + (x - y)2 = 16
<=> M = 16 - (x - y)2 \(\le\)16
Vậy max là 16
Ta lại có
2x2 + 2y2 - 2xy = 16
<=> 2x2 + 2y2 = 16 + 2xy
<=> 3(x2 + y2) = 16 + (x + y)2 \(\ge16\)
<=> 3M\(\ge\)16
<=> M \(\ge\frac{16}{3}\)
Vậy min là \(\frac{16}{3}\)
(Modulo 3, nha bạn.)
Giả sử tồn tại 5 số thoả đề.
Trong 5 số nguyên dương phân biệt đó sẽ xảy ra 2 trường hợp:
1. Có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.
Khi đó, tổng 3 số này chia hết cho 3 (vô lí).
2. 5 số này khi chia cho 3 chỉ còn 2 loại số dư mà thôi.
Khi đó, theo nguyên lí Dirichlet thì tồn tại 3 số cùng số dư khi chia cho 3. Tổng 3 số này chia hết cho 3 (vô lí nốt).
Vậy điều giả sử là sai.
Từ \(\frac{xy}{x+y}=\frac{yz}{y+z}=\frac{xz}{x+z}\Rightarrow\frac{x+y}{xy}=\frac{y+z}{yz}=\frac{x+z}{xz}\)
\(\Rightarrow\frac{x}{xy}+\frac{y}{xy}=\frac{y}{yz}+\frac{z}{yz}=\frac{x}{xz}+\frac{z}{xz}\)
\(\Rightarrow\frac{1}{y}+\frac{1}{x}=\frac{1}{y}+\frac{1}{z}=\frac{1}{z}+\frac{1}{x}\)
\(\Rightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\).Khi đó
\(P=\frac{20xy+4yz+2013xz}{x^2+y^2+z^2}=\frac{20x^2+4x^2+2013x^2}{x^2+x^2+x^2}=\frac{2037x^2}{3x^2}=679\)
cho x,y>0 thỏa mãn \(^{x^2+y^2-xy=8}\)
tìm GTNN và GTNN của biểu thức M=\(^{x^2+y^2}\)
x=0.k mình nhá