Chứng minh:
a). Biểu thức: A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7¹⁰⁰ chia hết cho 8
b) Biểu thức B = 2 + 2² + 2³ + … + 2²⁰⁰
chia hết cho 5.
(Giúp mình với ạ, mình cảm ơn)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x + 6 = 2x + 2 + 4 = 2(x + 1) + 4
Để (2x + 6) ⋮ (x + 1) thì 4 ⋮ (x + 1)
⇒ x + 1 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}
⇒ x ∈ {-5; -3; -2; 0; 1; 3}
*) Nếu x là số nguyên thì:
x ∈ {-5; -3; -2; 0; 1; 3}
*) Nếu x là số tự nhiên thì:
x ∈ {0; 1; 3}
Ta có: \(6a\) là hợp số
\(\Rightarrow\)Không có giá trị \(a\) thỏa mãn
Ta có:
6a có ước là 2; 3 nên 6a là hợp số với mọi a là số tự nhiên
Vậy không tìm được số tự nhiên a thỏa mãn đề bài
Vì BCLN(a;b)=72
Nên a;b ϵ Ư(72)
Liệt kê Ư(72)={1;2;3;4;6;8;9;12;18;24;36}
Vì a+b=42
Nên a=18;b=24
Gọi số học sinh lớp 6C là x,( xϵ N , x≠ 0)
Ta có: \(3=3\\ 5=5\\ 9=3^2\)
\(\Rightarrow BCNN\left(3,5,9\right)=3^2.5=45\)
\(\Rightarrow B\left(45\right)=\left\{0;45;90;135;...\right\}\)
Mà \(35< x< 60\\ \Rightarrow x=45.\)
Vậy lớp 6C có 45 học sinh.
5\(^{x+1}\) - 5\(^x\) = 2.28 + 8
5\(^x\).(5 - 1) = 520
5\(^x\).4 = 520
5\(^x\) = 520 : 4
5\(^x\) = 130
Với \(x\) = 0 ⇒ 5\(^x\) = 50 = 1 < 130 (loại)
Với \(x\) > 0 ⇒ 5\(^x\) = \(\overline{...5}\) \(\ne\) 130 (loại)
Vậy \(x\) \(\in\) \(\varnothing\)
\(5^{x+1}-5^x=2.2^8+8\\ 5^x\left(5-1\right)=512+8\\ 5^x.4=520\\ 5^x=\dfrac{520}{4}=130\)
Em xem lại đề
\(2n+15⋮2n+3\)
⇒\(2n+3+12⋮2n+3\)
⇒\(12⋮2n+3\)
⇒\(2n+3\inƯ\left(12\right)\)
\(Ư\left(12\right)=\left\{-12,-6,-4,-3,-2,-1,^{ }1,^{ }2,^{ }3,^{ }4,^{ }6,^{ }12\right\}\)
Sau khi làm đến đây thì bạn lập bảng và kết luận nhé! Chúc học tốt!
Gọi số học sinh là \(a\) (học sinh)
Ta có: \(a⋮9,12,15\) và \(500\le a\le550\)
⇒ \(a\in B\left(9,12,15\right)\)
\(B\left(9,12,15\right)=\left\{0,180,360,540,720,...\right\}\)
⇒ \(a=540\)
Vậy số học sinh khối 6 của trường đó là 540 học sinh
Gọi số học sinh của trường đó là a (em)
a) \(A=7^{13}+7^{14}+7^{15}+7^{16}+...+7^{100}\)
\(A=\left(7^{13}+7^{14}\right)+\left(7^{15}+7^{16}\right)+...+\left(7^{99}+7^{100}\right)\)
\(A=7^{13}\left(1+7\right)+7^{15}\left(1+7\right)+...+7^{99}\left(1+7\right)\)
\(A=7^{13}.8+7^{15}.8+...+7^{99}.8\)
\(A=8.\left(7^{13}+7^{15}+...+7^{99}\right)\)
⇒ \(A⋮8\)
Vậy A chia hết cho 8 (đpcm)
a) A = 7¹³ + 7¹⁴ + 7¹⁵ + 7¹⁶ + ... + 7⁹⁹ + 7¹⁰⁰
= (7¹³ + 7¹⁴) + (7¹⁵ + 7¹⁶) + ... + (7⁹⁹ + 7¹⁰⁰)
= 7¹³.(1 + 7) + 7¹⁵.(1 + 7) + ... + 7⁹⁹.(1 + 7)
= 7¹³.8 + 7¹⁵.8 + ... + 7⁹⁹.8
= 8.(7¹³ + 7¹⁵ + ... + 7⁹⁹) ⋮ 8
Vậy A ⋮ 8
b) B = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰⁰
= 2 + 2² + 2³ + 2⁴ + 2⁵ + 2⁶ + 2⁷ + 2⁸ + ... + 2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁹⁷ + 2¹⁹⁸ + 2¹⁹⁹ + 2²⁰⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + 2¹⁹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁹⁶.30
= 30.(1 + 2⁴ + ... + 2⁹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁹⁶) ⋮ 5
Vậy B ⋮ 5