K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
2 tháng 7 2021

ĐK: \(x\ge\frac{1}{6}\).

\(\sqrt{3x+3}-\sqrt{6x-1}+18x^2-3x-2=0\)

\(\Leftrightarrow\left(\sqrt{3x+3}-2\right)-\left(\sqrt{6x-1}-1\right)+18x^2-3x-1=0\)

\(\Leftrightarrow\frac{3x+3-4}{\sqrt{3x+3}+2}-\frac{6x-1-1}{\sqrt{6x-1}+1}+\left(3x-1\right)\left(6x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{\sqrt{3x+3}+2}-\frac{2}{\sqrt{6x-1}+1}+6x+1\right)=0\)

\(\Leftrightarrow3x-1=0\)(vì \(\frac{1}{\sqrt{3x+3}+2}-\frac{2}{\sqrt{6x-1}+1}+6x+1>0\)với \(x\ge\frac{1}{6}\))

\(\Leftrightarrow x=\frac{1}{3}\)(thỏa mãn) 

2 tháng 7 2021

x = 1/3 là nghiệm của p/t 

ĐKXĐ : \(x\ge\frac{1}{6}\) > 0 

Pt đã cho \(\Leftrightarrow\sqrt{3x+3}-2+\left(18x^2-6x\right)+3x-\sqrt{6x-1}=0\)  = 0 

\(\Leftrightarrow\frac{3x+3-4}{\sqrt{3x+3}+2}+6x\left(3x-1\right)+\frac{9x^2-\left(6x-1\right)}{3x+\sqrt{6x-1}}=0\)

\(\Leftrightarrow\frac{3x-1}{\sqrt{3x+3}+2}+6x\left(3x-1\right)+\frac{\left(3x-1\right)^2}{3x+\sqrt{6x-1}}=0\)

\(\Leftrightarrow\left(3x-1\right)\left(\frac{1}{\sqrt{3x+3}+2}+6x+\frac{3x-1}{3x+\sqrt{6x+1}}\right)=0\)

\(\Leftrightarrow\left(3x-1\right).A=0\) (1) 

Thấy với \(x\ge\frac{1}{6}\)::  \(\frac{3x-1}{3x+\sqrt{6x+1}}+1=\frac{6x+\sqrt{6x+1}-1}{3x+\sqrt{6x+1}}>0\) 

\(6x-1\ge0\)\(\frac{1}{\sqrt{3x+3}+2}>0\) 

Suy ra : \(A>0\) (2)

(1) ; (2) suy ra : x = 1/3 

3 tháng 7 2021

Bạn tham khảo trường hợp \(n=4\) của định lí Fermat cuối cùng. 

2 tháng 7 2021

ĐKXĐ : \(x\ne-2;y\ne\frac{3}{2}\)

Đặt : \(a=\frac{1}{x+2};b=\frac{1}{2y-3}\)  

HPT đã cho : \(\hept{\begin{cases}2a-b=2\\6a-2b=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=-\frac{3}{2}\\b=-5\end{cases}}}\) hay \(\hept{\begin{cases}\frac{1}{x+2}=-\frac{3}{2}\\\frac{1}{2y-3}=-5\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{8}{3}\\y=\frac{7}{5}\end{cases}}}\)

Vậy ... 

2 tháng 7 2021

ĐK : x khác -2 ; y khác 3/2

Đặt \(\hept{\begin{cases}a=\frac{2}{x+2}\\b=\frac{1}{2y-3}\end{cases}\left(a,b\ne0\right)}\)

hpt đã cho trở thành \(\hept{\begin{cases}a-b=2\\3a-2b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2+b\\b=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-3\\b=-5\end{cases}\left(tm\right)}\)

\(\Rightarrow\hept{\begin{cases}\frac{2}{x+2}=-3\\\frac{1}{2y-3}=-5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{8}{3}\\y=\frac{7}{5}\end{cases}\left(tm\right)}\)

2 tháng 7 2021
Câu trả lời bằng hình

Bài tập Tất cả

2 tháng 7 2021
Câu trả lời bằng hình

Bài tập Tất cả

2 tháng 7 2021

Bạn tham khảo nhé !

x2 + mx - 1 = 0 có  Δ= m2 - 4 ( x - 1 ) = m2 + 4 \(\ge\)\(\forall\)\(\in\)\(\Rightarrow\)phương trình luôn có 2 nghiệm phân biệt

Theo định lý Viete, ta có: \(\hept{\begin{cases}x_1+x_2=-m\\x_1x_2=-1\end{cases}}\)

Theo giả thiết: x21 + x22  = 5x1x2 \(\Leftrightarrow\)( x1 + x2 ) 2 = 7x1x2

\(\Rightarrow\)( - m ) 2 = 7 ( - 1 ) \(\Rightarrow\)m2 = - 7 \(\Leftrightarrow\)\(\in\)\(\varnothing\)

Vậy không tồn tại m thõa ycbt

5 tháng 7 2021

C A B D T K X M E Y Z

Vẽ (A;AC) và (B;BC). BT cắt (A) tại Z khác T, AK cắt (B) tại Y khác K. E đối xứng với C qua AB

Vì CA,CB vuông góc nhau nên CA tiếp xúc (B) và CB tiếp xúc (A)

Suy ra \(AC^2=AT^2=AK.AY\). Suy ra \(\widehat{ATK}=\widehat{AYT}\). Tương tự \(\widehat{BKT}=\widehat{BZK}\)

Dễ thấy AC=AT=AZ=AE, BC=BK=BY=BE suy ra CE là trục đẳng phương của (A) và (B)

Do đó \(P_{X/\left(A\right)}=\overline{XZ}.\overline{XT}=P_{X/\left(B\right)}=\overline{XY}.\overline{XK}\), suy ra (K,T,Y,Z)cyc

Suy ra \(\widehat{ATK}=\widehat{AYT}=\widehat{BZK}=\widehat{BKT}\). Vậy tam giác MKT cân tại M hay MK = MT.