K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2016

A B C D E F M N K

a) Ta có :

Góc BAD + Góc ADC = 180o

\(\Rightarrow\frac{1}{2}\widehat{BAD}+\frac{1}{2}\widehat{ADC}=\frac{1}{2}.180^o\)

\(\Rightarrow\widehat{MAD}+\widehat{MDA}=90^o\)

Xét \(\Delta MAD\)có \(\widehat{MAD}+\widehat{MDA}=90^o\Rightarrow\widehat{AMD}=90^o\)

\(\Rightarrow\widehat{AMD}=\widehat{AMF}=\widehat{DME}=90^o\)( SỬ dụng góc kề bù để suy ra )

Xét \(\Delta AMD\)và \(\Delta AMF:\)

\(\widehat{DAM}=\widehat{FAM}\)( AE là phân giác \(\widehat{A}\))

Chung cạnh AM

\(\widehat{AMD}=\widehat{AMF}\)( cmt )

\(\Rightarrow\Delta AMD=\Delta AMF\left(g.c.g\right)\)

\(\Rightarrow M\)là trung điểm DF

Xét \(\Delta AFM\)và \(\Delta EDM\), có :

\(\widehat{AFM}=\widehat{EDF}\)( 2 góc so le trong vì AF//DE )

\(FM=DM\)( M là trung điểm DF )

\(\widehat{FMA}=\widehat{DME}=90^o\)

\(\Rightarrow\Delta AMF=\Delta EMD\left(g.c.g\right)\)

\(\Rightarrow\)M là trung điểm AE

Tứ giác ADEF có hai đường chép vuông góc với nhau tại trung điểm mỗi đường nên là hình thoi.

b) Từ N kẻ đường thằng song song với AB ( CD ); cắt BC tại K.

Có \(\widehat{FBN}=\widehat{BNK}\)( So le trong )

Mà \(\widehat{FBN}=\widehat{KBN}\)( BN là phân giác góc B )

\(\Rightarrow\widehat{BNK}=\widehat{KBN}\) nên tam giác KBN cân tại K; hay BK = NK

Tương tự chứng minh tam giác CNK cân tại K; hay NK = KC

\(\Rightarrow BK=KC;\)hay K là trung điểm BC

\(AB\text{//}CD\Rightarrow FB\text{//}EC\)

\(\Rightarrow FBCE\)là hình thang

Xét hình thang FBCE có :

\(NK\text{//}FB\text{//}FC\)

\(K\)là trung điểm BC

\(\Rightarrow NK\)là đường trung bình hình thang, hay N là trung điểm FE, tức N nằm trên EF

Vậy ...

c) \(AB=\frac{3}{2}AD\) nên đặt \(AD=2\alpha;AB=3\alpha\)

Ở phần a đã chứng minh \(\Delta AMD=\Delta AMF\Rightarrow AD=AF=2\alpha\)(2 cạnh tương ứng )

Xét tam giác EAF :  N là trung điểm FE ; M là trung điểm AE nên MN là đường trung bình

\(\Rightarrow MN=\frac{1}{2}AF=\frac{1}{2}\left(2\alpha\right)=\alpha\)

Vì góc A = 120o nên \(\widehat{FAM}=\frac{1}{2}.\widehat{A}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{MFA}=90^o-\widehat{FAM}=30^o\)

Xét tam giác AMF vuông tại M có 2 góc nhọn là 60o và 30o \(\Rightarrow AM=\frac{1}{2}FA=\frac{1}{2}\left(2\alpha\right)=\alpha\)(Mình chứng minh bên dưới 

Mà \(AM=ME\Rightarrow ME=\alpha\)

Do ABCD là hình bình hành nên góc BCD cũng bằng góc A và bằng 120o

\(\Rightarrow\widehat{BCN}=\frac{1}{2}\widehat{C}=\frac{120^o}{2}=60^o\)

\(\Rightarrow\widehat{CBN}=90^o-\widehat{BCN}=30^o\)

Xét tam giác vuông BNC vuông tại N có 2 góc nhọn là 30o và 60o nên \(NC=\frac{1}{2}BC=\frac{1}{2}AD=\frac{1}{2}\left(2\alpha\right)=\alpha\)

AFED là hình thoi nên \(FA=DE=2\alpha\)

Lại có \(CD=AB=3\alpha\)

\(\Rightarrow CD-DE=EC=3\alpha-2\alpha=\alpha\)

Tứ giác \(MNCE\)có 4 cạnh bằng nhau và bằng \(\alpha\) nên là hình thoi.

Vậy ...

3 tháng 11 2016

À quên :) Cách chứng minh một tam giác vuông có một góc 60 độ / 30 độ thì cạnh góc vuông nhỏ hơn sẽ bằng nửa cạnh huyền.

S P Q J 60 30

Xét tam giác SQP vuông tại Q và \(\widehat{P}=60^o;\widehat{S}=30^o\)

Trên tia đối của QP, lấy J sao cho JQ=QP.

Xét \(\Delta SJP\)có \(SQ\)vừa là đường cao, vừa là trung tuyến nên là tam giác cân, lại có  \(\widehat{S}=60^o\)nên là tam giác đều.

\(\Rightarrow JP=SQ\)

\(\Rightarrow2.QP=SQ\)

\(\Rightarrow SQ=\frac{1}{2}SQ\)

Vậy ...

2 tháng 11 2016

\(2x^4+x^3-22x^2+15x-36\)

\(=\left(2x^4-6x^3\right)+\left(7x^3-21x^2\right)+\left(-x^2+3x\right)+\left(12x-36\right)\)

\(=\left(x-3\right)\left(2x^3+7x^2-x+12\right)\)

\(=\left(x-3\right)\left(\left(2x^3+8x^2\right)+\left(-x^2-4x\right)+\left(3x+12\right)\right)\)

\(=\left(x-3\right)\left(x+4\right)\left(2x^2-x+3\right)\)

2 tháng 11 2016
thằng hoàng ngu người, câu ni mà k làm đc
2 tháng 11 2016

Đề bài sai ngay từ giả thiết x,y,z nguyên dương.

Rõ ràng khi đó x,y,z > 0 => \(xy+yz+zx>0\)(đẳng thức không xảy ra)

Vậy đề đúng phải là x,y,z nguyên dương thỏa mãn \(xy+yz+zx=1\)

Khi đó ta giải như sau : 

\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)

\(y^2+1=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)

\(z^2+1=z^2+xy+yz+zx=\left(z+x\right)\left(z+y\right)\)

\(\Rightarrow A=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\) là bình phương của một số nguyên.

2 tháng 11 2016

M N P Q O E F G H

Vì MNPQ là hình thoi nên ta có MN // PQ . Do vậy OE vuông góc với MN thì OE cũng vuông góc với PQ. Giả sử OE cắt PQ lại \(G'\)thì \(\widehat{EG'P}=90^o\)hay \(\widehat{OG'P}\) (1)

Mặt khác vì OG cũng vuông góc với PQ nên \(\widehat{OGP}=90^o\) (2)

Từ (1) và (2) suy ra \(\widehat{OG'P}=\widehat{OGP}=90^o\)\(\Rightarrow G'\equiv G\)

\(E,O,G'\)thẳng hàng nên E,O,G thẳng hàng (đpcm)

2 tháng 11 2016

Dòng thứ 2 mình viết thiếu là \(\widehat{OG'P}=90^o\) nhé ^^

2 tháng 11 2016

A B C d h H a

Gọi h là đường cao của tam giác ABC thì h là hằng số không đổi và cạnh đấy BC = a cố định.

Ta có \(S_{ABC}=\frac{1}{2}.BC.AH=\frac{1}{2}ah\) không đổi.

Vậy có đpcm

1 tháng 11 2016

Đây, bản full đây thím, tớ thực sự đã kiên nhẫn lắm đấy ...

a)\(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)=4\left(x^2-y^2-2x+2ay-a^2+1\right)\)

\(=4\left[\left(x^2-2x+1\right)-\left(a^2-2ay+y^2\right)\right]\)

\(=4\left[\left(x-1\right)^2-\left(a-y\right)^2\right]\)

\(=4\left(x-1-a+y\right)\left(x-1+a-y\right)\)

b)\(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2-xy+y^2+x+y+1\right)\)

c)\(x^3-1+5x^2-5+3x-3=\left(x-1\right)\left(x^2+x+1\right)+5\left(x^2-1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+5\left(x-1\right)\left(x+1\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1\right)+\left(x-1\right)\left(5x+5\right)+3\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2+x+1+5x+5+3\right)\)

\(=\left(x-1\right)\left(x^2+6x+9\right)\)

\(=\left(x-1\right)\left(x+3\right)^2\)

d)\(a^5+a^4+a^3+a^2+a+1=a^4\left(a+1\right)+a^2\left(a+1\right)+\left(a+1\right)\)

\(=\left(a+1\right)\left(a^4+a^2+1\right)\)

\(=\left(a+1\right)\left(a^4+2a^2+1-a^2\right)\)

\(=\left(a+1\right)\left[\left(a^2+1\right)^2-a^2\right]\)

\(=\left(a+1\right)\left(a^2-a+1\right)\left(a^2+a+1\right)\)

e)\(x^3-3x^2+3x-1-y^3=\left(x-1\right)^3-y^3\)

\(=\left(x-1-y\right)\left[\left(x-1\right)^2+\left(x-1\right)y+y^2\right]\)

\(=\left(x-1-y\right)\left(x^2-2x+1+xy-y+y^2\right)\)

f)\(5x^3-3x^2y-45xy^2+27y^3=5x\left(x^2-9y^2\right)-3y\left(x^2-9y^2\right)\)

\(=\left(x^2-9y^2\right)\left(5x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)\left(5x-3y\right)\)

g)\(3x^2\left(a-b+c\right)+36xy\left(a-b+c\right)+108y^2\left(a-b+c\right)\)

\(=\left(a-b+c\right)\left(3x^2+36xy+108y^2\right)\)

\(=3\left(a-b+c\right)\left(x^2+12xy+36y^2\right)\)

\(=3\left(a-b+c\right)\left(x+6y\right)^2\)

1 tháng 11 2016

a/ \(4\left(x^2-y^2\right)-8\left(x-ay\right)-4\left(a^2-1\right)\)

\(=\left(4x^2-8x+4\right)-\left(4y^2-8ay+4a^2\right)\)

\(=\left(2x-2\right)^2-\left(2y-2a\right)^2=\left(2x-2+2y-2a\right)\left(2x-2-2y+2a\right)\)

b/ \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)=\left(x+y-1\right)\left(x^2+y^2+2xy+x+y+1\right)-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)\)

Giải giúp bạn 2 bài tiêu biểu thôi nha

31 tháng 10 2016

Toán CASIO hả Hoàng Phúc ? 

2 tháng 11 2016

1 2012

31 tháng 10 2016

Ta có

\(\hept{\begin{cases}x+y-xy=55\\x^2+y^2=325\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(x+y\right)-2xy=110\\\left(x+y\right)^2-2xy=325\end{cases}}\)

Lấy dưới trừ trên vế theo vế ta được

(x + y)2 - 2(x + y) = 215

\(\Leftrightarrow\orbr{\begin{cases}x+y=1+6\sqrt{6}\\x+y=1-6\sqrt{6}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}xy=6\sqrt{6}-54\\xy=-6\sqrt{6}-54\end{cases}}\)

Ta lại có

31 tháng 10 2016

Ta lại có 

x3 - y3 = (x - y)(x2 + xy + y2) = 

\(\sqrt{\left(x+y\right)^2-4xy}\left(x^2+xy+y^2\right)\)

Giờ chỉ việc thế số vô là có đáp án nhé

31 tháng 10 2016

cái áp dụng là Schawrts chứ

12 tháng 8 2020

BĐT sau đây vẫn đúng: \(\Sigma a\left(a-c\right)\left(a-b\right)\ge abc\left(\frac{2a}{b+c}+\frac{2b}{c+a}+\frac{2c}{a+b}-3\right)+\frac{16\left(a-b\right)^2\left(b-c\right)^2\left(c-a\right)^2}{\left(a+b+c\right)^3}\)