K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

Nếu x; y; z là các số nguyên dương mà x y z = 1 => x = y = z = 1

=> bất đẳng thức luôn xảy ra dấu bằng

Sửa đề 1 chút cho z; y; x là các số dương

Ta có: \(\frac{x^2}{y+1}+\frac{y+1}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)

=> \(\frac{x^2}{y+1}\ge x-\frac{y+1}{4}\)

Tương tự: 

\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge x+y+z-\frac{y+1}{4}-\frac{z+1}{4}-\frac{x+1}{4}\)

\(=\frac{3}{4}\left(x+y+z\right)-\frac{3}{4}\ge\frac{3}{4}.3\sqrt[3]{xyz}-\frac{3}{4}=\frac{3}{2}\)

Dấu "=" xảy ra <=> x = y = z = 1

27 tháng 10 2020

A B C O E F

Áp dụng định lý dường phân giác: "Trong tam giác đường phân giác của một góc chia cạnh đối diện thành 2 đoạn thảng tỷ lệ với hai cạnh kề hai đoạn ấy"

Xét tg BCE có 

\(\frac{BO}{EO}=\frac{BC}{CE}\Rightarrow\frac{BO}{BC}=\frac{EO}{CE}=\frac{BO+EO}{BC+CE}=\frac{BE}{BC+CE}\Rightarrow\frac{BO}{BE}=\frac{BC}{BC+CE}\) 

Xét tg BCF có

\(\frac{CO}{FO}=\frac{BC}{BF}\Rightarrow\frac{CO}{BC}=\frac{FO}{BF}=\frac{CO+FO}{BC+BF}=\frac{CF}{BC+BF}\Rightarrow\frac{CO}{CF}=\frac{BC}{BC+BF}\)

\(\Rightarrow\frac{BO}{BE}.\frac{CO}{CF}=\frac{BC.BC}{\left(BC+CE\right)\left(BC+CF\right)}=\frac{BC^2}{\left(BC+CE\right)\left(BC+BF\right)}=\frac{1}{2}\)

\(\Rightarrow2.BC^2=\left(BC+CE\right)\left(BC+BF\right)=BC^2+BC.BF+BC.CE+CE.CE\)

\(\Rightarrow BC^2=BC.BF+BC.CE+CE.BF\) (*)

Xét tg ABC cũng áp dụng định lý đường phân giác có

\(\frac{BF}{AF}=\frac{BC}{AC}\Rightarrow\frac{BF}{BC}=\frac{AF}{AC}=\frac{BF+AF}{BC+AC}=\frac{AB}{BC+AC}\Rightarrow BF=\frac{BC.AB}{BC+AC}\)  (1)

\(\frac{CE}{AE}=\frac{BC}{AB}\Rightarrow\frac{CE}{BC}=\frac{AE}{AB}=\frac{CE+AE}{BC+AB}=\frac{AC}{BC+AB}\Rightarrow CE=\frac{BC.AC}{BC+AB}\) (2)

Thay (1) và (2)  vào (*) ta có

\(BC^2=\frac{BC.BC.AB}{BC+AC}+\frac{BC.BC.AC}{BC+AB}+\frac{BC.AC.BC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)

\(\Rightarrow1=\frac{AB}{BC+AC}+\frac{AC}{BC+AB}+\frac{AC.AB}{\left(BC+AB\right)\left(BC+AC\right)}\)

=> (BC+AB)(BC+AC)=AB(BC+AB)+AC(BC+AC)+AB.AC

=> BC2+AC.BC+AB.BC+AB.AC=AB.BC+AB2+AC.BC+AC2+AB.AC => BC2=AB2+AC2

=> tam giác ABC vuông tại A (định lí pitago đảo)

26 tháng 10 2020

\(x^3-2x^2+3x=y^3+1\Leftrightarrow x^3-2x^2+3x-1=y^3\)

Ta có: \(y^3-\left(x+1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3+3x^2+3x+1\right)=-5x^2-2< 0\Rightarrow y^3< \left(x+1\right)^3\Rightarrow y< x+1\)(1)

\(y^3-\left(x-1\right)^3=\left(x^3-2x^2+3x-1\right)-\left(x^3-3x^2+3x-1\right)=x^2\ge0\Rightarrow y^3\ge\left(x-1\right)^3\Rightarrow y\ge x-1\)(2)

Từ (1) và (2) suy ra \(x-1\le y< x+1\Rightarrow\orbr{\begin{cases}y=x-1\\y=x\end{cases}}\)(do x, y nguyên)

  • Trường hợp y = x - 1 thì phương trình trở thành \(x^3-2x^2+3x-1=x^3-3x^2+3x-1\Leftrightarrow x^2=0\Leftrightarrow x=0\Rightarrow y=-1\)
  • Trường hợp y = x thì phương trình trở thành \(2x^2-3x+1=0\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=1=y\\x=\frac{1}{2}\left(L\right)\end{cases}}\)

Vậy phương trình có 2 cặp nghiệm nguyên \(\left(x;y\right)\in\left\{\left(0;-1\right);\left(1;1\right)\right\}\)

26 tháng 10 2020

Sửa

Traditional psychiatric tests are divided into two categories. Performance tests are designed to measure skills and knowledge acquired, especially those that are clearly taught. The proficiency tests some states take to graduate from high school are tests of achievement. The aptitude tests are designed and measure a person's ability to acquire new skills but knowledge. For example, career aptitude tests can help you discern whether you'll do better as a mechanic or a musician. However, all of the mental tests are in some sensory achievement tests because they assume some kind of past learning or experience with certain objects, words or situations. The difference between a test of achievement and an aptitude is the intended use of the degree.

mk sửa lại

Traditional psychiatric tests are divided into two categories. Performance tests are designed to measure skills and knowledge acquired, especially those that are clearly taught. The proficiency tests some states take to graduate from high school are tests of achievement. The aptitude tests are designed and measure a person's ability to acquire new skills but knowledge. For example, career aptitude tests can help you discern whether you'll do better as a mechanic or a musician. However, all of the mental tests are in some sensory achievement tests because they assume some kind of past learning or experience with certain objects, words or situations. The difference between a test of achievement and an aptitude is the intended use of the degree.

2 tháng 8 2017

mình mới học lớp 7 nhưng chỉ biết câu a sai thì thôi nhé ac=ad vì cái kia = cái này mà cái này = cái kia bạn chỉ cần nói với cô như vậy.Thôi nha

2 tháng 8 2017

a/ Gọi E, F lần lược là trung điểm của AD, AC

\(\Rightarrow AI\)là đường trung bình của hình thang \(OFEO'\)

\(\Rightarrow AE=AF\)

\(\Rightarrow AD=AC\)

b/ Gọi G là giao điểm của AB với OO'

\(\Rightarrow IG\)là đường trung bình của \(\Delta ABK\)

\(\Rightarrow\)IG // BK

Mà \(IG⊥AB\)

\(\Rightarrow BK⊥AB\)

PS: Bạn vẽ hộ cái hình nhé

25 tháng 7 2017

Ta có:

\(3^{4n+1}=3.81^n\text{≡}3\left(mod10\right)\)

\(\Rightarrow3^{4n+1}=10k+3\)

\(\Rightarrow2^{3^{4n+1}}=2^{10k+3}=8.1024^k\text{≡}8\left(mod11\right)\left(1\right)\)

Ta lại có:

\(2^{4n+1}=2.16^n\text{≡}2\left(mod5\right)\)

\(\Rightarrow2^{4n+1}=5a+2\)

\(\Rightarrow3^{2^{4n+1}}=3^{5a+2}=9.243^a\text{≡}9\left(mod11\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow3^{2^{4n+1}}+2^{3^{4n+1}}+5\text{≡}9+8+5\text{≡}22\text{≡}0\left(mod11\right)\)

25 tháng 7 2017

thiếu đk của n 

25 tháng 10 2020

Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)

\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)

\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)

\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)

\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)

Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình

25 tháng 9 2017

Kẽ phân giác AD của tam giác ABC, \(AD=l\)

Ta có:

\(S_{ABC}=S_{ABD}+S_{ACD}=\frac{c.l.sin\frac{A}{2}}{2}+\frac{b.l.sin\frac{A}{2}}{2}=\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\left(1\right)\)

Ta lại có:

\(\frac{a.l}{2}\ge\frac{a.h_a}{2}=S_{ABC}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{a.l}{2}\ge\frac{l}{2}.sin\frac{A}{2}.\left(b+c\right)\)

\(\Leftrightarrow sin\frac{A}{2}\le\frac{a}{b+c}\le\frac{a}{2\sqrt{bc}}\)

25 tháng 9 2017

bài bạn alibaba kiểu zì zì tam giác ban đầu đã vuông đâu