Tìm x:
a) 4(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
b) 5(3x + 5) - 4(2x - 3) = 5x + 3(2x + 12) + 1
c) 2(5x - 8) - 3(4x - 5) = 4(3x - 4) +11
d) 5x - 3{4x - 2[4x - 3(5x - 2)]} = 182
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{x}{2}+1\right)^3-\frac{x^3}{2}-4=0\)
kĩ thuật nhân thêm 2 :
\(2\left(\frac{x}{2}+1\right)^3-\frac{x^3}{2}-8=0\)
\(\Leftrightarrow\frac{x^3}{4}+x^2+x+\frac{x^2}{2}+2x+2-x^3-8=0\)
\(\Leftrightarrow\frac{-3x^3}{4}+\frac{3x^2}{2}+3x-6=0\)
\(\Leftrightarrow-3\left(\frac{x^3}{4}-\frac{x^2}{2}-x+2\right)=0\)
\(\Leftrightarrow\frac{x^3-2x^2-4x+8}{4}=0\Leftrightarrow x^3-2x^2-4x+8=0\)
\(\Leftrightarrow x^2\left(x-2\right)-4\left(x-2\right)=0\Leftrightarrow\left(x+2\right)\left(x-2\right)^2=0\Leftrightarrow x=\pm2\)
Vậy tập nghiệm phương trình là S = { -2 ; 2 }
O A B C D
Ta có AB//CD (2 đáy của hình thang ABCD)
\(\Rightarrow\frac{OA}{OD}=\frac{OB}{OC}=\frac{AB}{CD}\Rightarrow\frac{OA}{OA+AD}=\frac{OB}{OB+BC}=\frac{AB}{CD}\)
Từ \(\frac{OA}{OA+AD}=\frac{AB}{CD}\Rightarrow\frac{OA}{OA+9}=\frac{12}{30}\Rightarrow AO=6cm\)
Từ \(\frac{OB}{OB+BC}=\frac{AB}{CD}\Rightarrow\frac{OB}{OB+15}=\frac{12}{30}\Rightarrow OB=10cm\)
A B C d G H M K
Dựng đường cao AH (H thuộc BC)
Dựng trung tuyến AM, G là trọng tâm \(\Rightarrow\frac{MG}{AM}=\frac{1}{3}\)
\(S_{ABC}=\frac{BC.AH}{2}\) Ta có \(S_{ABC}\) không đổi, BC cố định không đổi => AH không đổi => A chạy trên đường thẳng d//BC
Từ G dựng GK//AH (K thuộc BC)
\(\Rightarrow\frac{MG}{AM}=\frac{KG}{AH}=\frac{1}{3}\) (Talet trong tam giác) \(\Rightarrow KG=\frac{AH}{3}\) không đổi
Mà GK//AH, AH vuông góc với BC => GK vuông góc với BC => G chạy trên đường thẳng //BC cách BC 1 khoảng không đổi\(=\frac{AH}{3}\)
A B C D E
a. ta có \(\hept{\begin{cases}\frac{DB}{DC}=\frac{AB}{AC}=\frac{10}{25}=\frac{2}{5}\\BD+DC=BC=30\end{cases}\Rightarrow\hept{\begin{cases}DB=\frac{60}{7}\\DC=\frac{150}{7}\end{cases}}}\)
mà \(\frac{DE}{AB}=\frac{CD}{CB}=\frac{5}{7}\Rightarrow DE=\frac{50}{7}cm\)
b.ta có \(\frac{S_{ABD}}{S_{ABC}}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{ABD}=\frac{120.2}{7}=\frac{240}{7}cm^2\Rightarrow S_{ACD}=S_{ABC}-S_{ABD}=\frac{600}{7}\)
mà
\(\frac{S_{AED}}{S_{ADC}}=\frac{AE}{AC}=\frac{BD}{BC}=\frac{2}{7}\Rightarrow S_{AED}=\frac{600}{7}\frac{.2}{7}=\frac{1200}{49}cm^2\Rightarrow S_{CDE}=S_{ACD}-S_{AED}=\frac{3000}{49}\)
Chào em, em tham khảo nhé!
1. A. control /ə/ B. enroll /ə/ C. solve /ɒ/ D. petrol /ə/
2. A. heritage /ɪdʒ/ B. cage /ɪdʒ/ C. cottage /ɪdʒ/ D. luggage /ɪdʒ/
=> Câu này không có đáp án đúng
3. A. useful /s/ B. promise /s/ C. advise /z/ D. increase /s/
4. A. sunbathing /ð/ B. southern /ð/ C. breathe /ð/ D. thunder /θ/
5. A. guitar /ɪ/ B. building /ɪ/ C. suitable /uː/ D. biscuit /ɪ/
Chúc em học tốt và có những trải nghiệm tuyệt vời tại olm.vn!
B A C D E F
P/s: Hình vẽ chỉ mang tính chất minh họa
Từ D kẻ các đường song song với AC,AB cắt AB,AC lần lượt tại E,F
=> Tứ giác AEDF là hình bình hành
Lại có AD là phân giác góc EAF => Tứ giác AEDF là hình thoi
=> AE = ED = DF = FA
Xét trong tam giác AED cân tại E có góc EAD = 60 độ
=> Tam giác AED đều => AD = DE = DF
Áp dụng định lý Thales ta có:
DE // AC => \(\frac{DE}{AC}=\frac{BD}{BC}\) ; DF // AB => \(\frac{DF}{AB}=\frac{DC}{BC}\)
Cộng vế với vế 2 đẳng trên ta được: \(\frac{DE}{AC}+\frac{DF}{AB}=\frac{BD}{BC}+\frac{DC}{BC}\)
\(\Leftrightarrow\frac{AD}{AC}+\frac{AD}{AB}=1\Rightarrow\frac{1}{AB}+\frac{1}{AC}=\frac{1}{AD}\)
=> đpcm
\(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)(ĐK: \(x\ne\pm1\))
\(\Leftrightarrow\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2\left(x+2\right)^2}{\left(x^3-1\right)\left(x^3+1\right)}\)
\(\Leftrightarrow\frac{x^2-1}{x^3-1}-\frac{x^2-1}{x^3+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)
\(\Leftrightarrow\left(x^2-1\right)\frac{x^3+1-\left(x^3-1\right)}{x^6-1}=\frac{2\left(x+2\right)^2}{x^6-1}\)
\(\Rightarrow x^2-1=\left(x+2\right)^2\)
\(\Leftrightarrow x=-\frac{5}{4}\)(thử lại thỏa mãn).
1.\(\left(x+1\right)\left(x+4\right)=\left(2-x\right)\left(2+x\right)\)
\(\Leftrightarrow x^2+4x+x+4=4-x^2\)
\(\Leftrightarrow x^2+5x+4=4-x^2\)
\(\Leftrightarrow x^2+5x+4-4+x^2=0\)
\(\Leftrightarrow2x^2+6x=0\)
\(\Leftrightarrow2x\left(x+3\right)=0\)
\(\Rightarrow2x=0\)hoặc \(x+3=0\)
Giải 2 pt:
\(2x=0\Leftrightarrow x=0\)
\(x+3=0\Leftrightarrow x=-3\)
Vậy \(S=\left\{0;-3\right\}\)
1)\(\left(x+1\right)\left(x+4\right)=\left(2-x\right)\left(2+x\right)\)
\(\Leftrightarrow x^2+5x+4=4-x^2\)
\(\Leftrightarrow x^2+5x+4-4+x^2=0\)
\(\Leftrightarrow2x^2+5x=0\)
\(\Leftrightarrow x\left(2x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{5}{2}\end{cases}}}\)
b,\(x^3-x^2=1-x\)
\(\Leftrightarrow x^3-x^2+x-1=0\)
\(\Leftrightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-1\\x=1\end{cases}\Leftrightarrow}x=1}\)
3)\(2x\left(x+1\right)=x^2-1\)
\(\Leftrightarrow2x\left(x+1\right)-\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2=0\)
\(\Leftrightarrow x=-1\)
4)\(\left(x-2\right)\left(2x+5\right)=\left(2x-4\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x+5\right)-2\left(x-2\right)\left(x+1\right)\)
\(\Leftrightarrow\left(x-2\right)\left(3x+5-2x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
a) Chứng minh AH′AHAH′AH = B′C′BCB′C′BC
Vì B’C’ // với BC => B′C′BCB′C′BC = AB′ABAB′AB (1)
Trong ∆ABH có BH’ // BH => AH′AHAH′AH = AB′BCAB′BC (2)
Từ 1 và 2 => B′C′BCB′C′BC = AH′AHAH′AH
b) B’C’ // BC mà AH ⊥ BC nên AH’ ⊥ B’C’ hay AH’ là đường cao của tam giác AB’C’.
Áp dụng kết quả câu a) ta có: AH’ = 1313 AH
B′C′BCB′C′BC = AH′AHAH′AH = 1313 => B’C’ = 1313 BC
=> SAB’C’= 1212 AH’.B’C’ = 1212.1313AH.1313BC
=>SAB’C’= (1212AH.BC)1919
mà SABC= 1212AH.BC = 67,5 cm2
Vậy SAB’C’= 1919.67,5= 7,5 cm2
a, \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)
\(\Leftrightarrow72-20x-36x+84=30x-240-6x-84\)
\(\Leftrightarrow156-56x=24x-324\)
\(\Leftrightarrow-80x+480=0\Leftrightarrow x=-6\)
b, \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x-12\right)+1\)
\(\Leftrightarrow15x+25-8x+12=5x+6x-36+1\)
\(\Leftrightarrow7x+37=11x-35\)
\(\Leftrightarrow-4x+72=0\Leftrightarrow x=18\)
c, \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-2x-1=12x-5\)
\(\Leftrightarrow-14x+4=0\Leftrightarrow x=\frac{2}{7}\)
d, \(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)
\(\Leftrightarrow5x-3\left[4x-15x+6\right]=182\)
\(\Leftrightarrow5x-3\left(-11x+6\right)=182\)
\(\Leftrightarrow5x+33x-18-182=0\)
\(\Leftrightarrow38x-200=0\Leftrightarrow x=\frac{100}{19}\)