Phạm Minh Tú
Giới thiệu về bản thân
Xác suất của biến cố "Bạn được chọn là nam" là \(\dfrac{1}{6}\).
Bậc của đa thức \(P\left(x\right)=3x^2+5x-7x^6\) là 6.
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{5}=\dfrac{y}{11}=\dfrac{x+y}{5+11}=\dfrac{32}{16}=2\)
Do đó:
\(\dfrac{x}{5}=2\) ⇒ x = 2 . 5 = 10
\(\dfrac{y}{11}=2\) ⇒ y = 2 . 11 = 22
Vậy x = 10 và y = 22.
\(\dfrac{-3}{11}-0,251-\dfrac{8}{11}+2,251\)
\(=\left(\dfrac{-3}{11}-\dfrac{8}{11}\right)+\left(2,251-0,251\right)\)
\(=\dfrac{-11}{11}+2\)
\(=\left(-1\right)+2\)
\(=1\)
a) \(A=\dfrac{15}{12}+\dfrac{5}{13}+\dfrac{-3}{12}+\dfrac{-18}{13}\)
\(=\left(\dfrac{15}{12}+\dfrac{-3}{12}\right)+\left(\dfrac{5}{13}+\dfrac{-18}{13}\right)\)
\(=\dfrac{12}{12}+\dfrac{-13}{13}\)
\(=1+\left(-1\right)\)
\(=0\)
b) \(B=\dfrac{11}{15}.\dfrac{-19}{13}+\dfrac{-7}{13}.\dfrac{11}{15}\)
\(=\dfrac{11}{15}.\left(\dfrac{-19}{13}+\dfrac{-7}{13}\right)\)
\(=\dfrac{11}{15}.\dfrac{-26}{13}\)
\(=\dfrac{11}{15}.\left(-2\right)\)
\(=\dfrac{-22}{15}\)
c) \(C=2022^0-\left(\dfrac{1}{7}\right)^5.7^5\)
\(=1-\dfrac{1}{7^5}.7^5\)
\(=1-1\)
\(=0\)
a) \(\dfrac{4}{9}+\dfrac{1}{4}=\dfrac{16}{36}+\dfrac{9}{36}=\dfrac{25}{36}\)
b) \(\dfrac{1}{3}.\left(\dfrac{-4}{5}\right)+\dfrac{1}{3}.\dfrac{-1}{5}\)
\(=\dfrac{1}{3}.\left[\left(\dfrac{-4}{5}\right)+\dfrac{-1}{5}\right]\)
\(=\dfrac{1}{3}.\dfrac{-5}{5}\)
\(=\dfrac{1}{3}.\left(-1\right)\)
\(=\dfrac{1}{3}\)
c) \(\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(1-\dfrac{1}{2}\right)^2\right]\)
\(=\dfrac{1}{5}-\left[\dfrac{1}{4}-\left(\dfrac{1}{2}\right)^2\right]\)
\(=\dfrac{1}{5}-\left[\dfrac{1}{4}-\dfrac{1}{4}\right]\)
\(=\dfrac{1}{5}-0\)
\(=\dfrac{1}{5}\)
Số kg đường cửa hàng bán vào ngày thứ nhất là:
\(120.25\%=30\) (kg)
Số kg đường còn lại là:
\(120-30=90\) (kg)
Số kg đường cửa hàng bán vào ngày thứ hai là:
\(90.\dfrac{4}{5}=72\) (kg)
Số kg đường cửa hàng bán vào ngày thứ ba là:
\(120-\left(30+72\right)=18\) (kg)