

Nguyễn Đức Trí
Giới thiệu về bản thân



































\(\left(1+\dfrac{2}{3}\right).\left(1+\dfrac{2}{4}\right).\left(1+\dfrac{2}{5}\right)....\left(1+\dfrac{2}{2020}\right).\left(1+\dfrac{2}{2021}\right)\)
= \(\dfrac{5}{3}.\dfrac{6}{4}.\dfrac{7}{5}.\dfrac{8}{6}.\dfrac{9}{7}....\dfrac{2022}{2020}.\dfrac{2023}{2021}\)
= \(\dfrac{1}{3}.\dfrac{1}{4}.2022.2023\)
= \(\dfrac{337.2023}{2}\)
= \(\dfrac{\text{681751}}{2}\)
a) P(x)=4x2-6x+a; Q(x)=x-3
Lấy P(x):Q(x)=4x-6 dư a+30
Vậy để P(x)⋮Q(x) ⇒ a+30=0 ⇒ a=-30
b) P(x)=2x2+x+a; Q(x)=x+3
Lấy P(x):Q(x)=2x-7 dư a+21
Vậy để P(x)⋮Q(x) ⇒ a+21=0 ⇒ a=-21
c) P(x)=x3+ax2-4; Q(x)=x2+4x+4
Lấy P(x):Q(x)=x+a-4 dư -4(a-5)x+12
Vậy để P(x)⋮Q(x) ⇒ -4(a-5)x+12=0 ⇒ (a-5)x=3
⇒ a-5 ϵ {-1;1;-3;3} (a ϵ Z)
⇒ a ϵ {4;6;2;8}
d) P(x)=2x2+ax+1; Q(x)=x-3
Lấy P(x):Q(x)=2x+a+6 dư 3a+19
Vậy để P(x)⋮Q(x) ⇒ 3a+19=0 ⇒ a=-19/3
e) P(x)=ax5+5x4-9; Q(x)=x-1
Lấy P(x):Q(x)=ax4+(a-5)x3+(a-5)x2+(a-5)x+1 dư a-4
Vậy để P(x)⋮Q(x) ⇒ a-4=0 ⇒ a=4
f) P(x)=6x3-x2-23x+a; Q(x)=2x+3
Lấy P(x):Q(x)=3x2-5x-4 dư a+12
Vậy để P(x)⋮Q(x) ⇒ a+12=0 ⇒ a=-12
g) P(x)=x3-6x2+ax-6 Q(x)=x-2
Lấy P(x):Q(x)=x2-2x+a-4 dư 2(a-4)-6
Vậy để P(x)⋮Q(x) ⇒ 2(a-4)-6=0 ⇒ a=7
Bài h có a,b bạn xem lại đề
\(1-\dfrac{3}{2}+2-\dfrac{5}{2}+...+2003-\dfrac{4007}{2}+2004\)
= \(\left(-\dfrac{1}{2}\right)+\left(-\dfrac{1}{2}\right)+...\left(-\dfrac{1}{2}\right)+2004\)
= \(2003.\left(-\dfrac{1}{2}\right)+2004\)
= \(-\dfrac{4006}{2}+\dfrac{4008}{2}\)
= \(\dfrac{2}{2}\)
= \(1\)
Vì 4<n≤7 và nϵN
⇒ n ϵ {5;6;7}
⇒ K=(n-1).(2n-1) ϵ {36;55;78}
\(f\left(x\right)=0\Leftrightarrow x^2+3=0\)
⇔ Vô nghiệm để đa thức f(x)=0 (vì x2≥0⇒x2+3>0)
\(-\dfrac{16}{18}.\dfrac{45}{32}-2,5=-\dfrac{5}{2}-\dfrac{5}{2}=-\dfrac{10}{2}=-5\)
Bài 1 : Gọi a là số lớn, b là số bé, theo đề bài ta có :
(a+b):2=36⇒a+b=72
mà b=17
Nên a=72-17=55
Bài 2 :
a) 4567+y:34=10987
⇒ y:34=10987-4567
⇒ y:34=6420
⇒ y=6420x34
⇒ y=218280
b) \(\dfrac{4}{3}+\dfrac{1}{2}:y=2\)
\(\Rightarrow\dfrac{1}{2}:y=2-\dfrac{4}{3}\)
\(\Rightarrow\dfrac{1}{2}:y=\dfrac{2}{3}\)
\(\Rightarrow y=\dfrac{1}{2}:\dfrac{2}{3}\)
\(\Rightarrow y=\dfrac{1}{2}x\dfrac{3}{2}\)
\(\Rightarrow y=\dfrac{3}{4}\)
Bài 3 :
\(\dfrac{2}{5}x\dfrac{2}{5}+\dfrac{9}{8}:3=\dfrac{4}{25}+\dfrac{9}{8}x\dfrac{1}{3}=\dfrac{4}{25}+\dfrac{3}{8}\)
= \(\dfrac{4x8}{25x8}+\dfrac{25x3}{25x8}=\dfrac{32}{200}+\dfrac{75}{200}=\dfrac{107}{200}\)
\(2-\left(\dfrac{1}{7}x4+\dfrac{5}{21}\right)=2-\left(\dfrac{4}{7}+\dfrac{5}{21}\right)=2-\left(\dfrac{12}{21}+\dfrac{5}{21}\right)=2-\dfrac{17}{21}=\dfrac{42}{21}-\dfrac{17}{21}=\dfrac{25}{21}\)
\(\left(1+\dfrac{1}{2}\right):\left(1+\dfrac{1}{3}\right):\left(1+\dfrac{1}{4}\right)\)
\(\left(\dfrac{2}{2}+\dfrac{1}{2}\right):\left(\dfrac{3}{3}+\dfrac{1}{3}\right):\left(\dfrac{4}{4}+\dfrac{1}{4}\right)\)
\(\dfrac{3}{2}x\dfrac{3}{4}:\dfrac{5}{4}\)
\(\dfrac{9}{8}:\dfrac{5}{4}\)
\(\dfrac{9}{8}x\dfrac{4}{5}\)
\(\dfrac{9}{10}\)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+100\right)=5750\)
\(\Rightarrow100x+\left(1+2+...100\right)=5750\)
\(\Rightarrow100x+\dfrac{100.\left(100+1\right)}{2}=5750\)
\(\Rightarrow100x+50.101=5750\)
\(\Rightarrow100x+5050=5750\)
\(\Rightarrow100x=5750-5050\)
\(\Rightarrow100x=700\)
\(\Rightarrow x=7\)
a)
Ta có:
Dạng chung của các số hữu tỉ bằng (−123123)/(164164) là (a là số bất kì).
b)
Ta có:
Dạng chung của các số hữu tỉ bằng (−434343)/(868686) là (−434)/(868)(a là số bất kì).