Trinhvanhung
Giới thiệu về bản thân
Xét tam giác ABCABC có BC⊥ AB′BC⊥ AB′ và B′C′⊥AB′B′C′⊥AB′ nên suy ra BCBC // B′C′B′C′.
Theo hệ quả định lí Thalès, ta có: ABAB′ =BCBC′AB′AB =BC′BC
Suy ra xx+h =aa′x+hx =a′a
a′.x=a(x+h)a′.x=a(x+h)
a′.x−ax=aha′.x−ax=ah
x(a′−a)=ahx(a′−a)=ah
x=aha′ −ax=a′ −aah.
Trong tam giác ADBADB, ta có: MNMN // ABAB (gt)
Suy ra DNDB =MNABDBDN =ABMN (hệ quả định lí Thalès) (1)
Trong tam giác ACBACB, ta có: PQPQ // ABAB (gt)
Suy ra CQCB =PQABCBCQ =ABPQ (hệ quả định lí Thalès) (2)
Lại có: NQNQ // ABAB (gt); ABAB // CDCD (gt)
Suy ra NQNQ // CDCD
Trong tam giác BDCBDC, ta có: NQNQ // CDCD (chứng minh trên)
Suy ra DNDB =CQCBDBDN =CBCQ (định lí Thalès) (3)
Từ (1), (2) và (3) suy ra MNAB =PQAB hayABMN =ABPQ hayMN = PQ$ (đpcm).
Khi đó, ADAD là đường trung tuyến của tam giác ABCABC.
Vì GG là trọng tâm của tam giác ABCABC nên điểm GG nằm trên cạnh ADAD.
Ta có AGAD=23ADAG=32 hay AG=23ADAG=32AD.
Vì MGMG // ABAB, theo định lí Thalès, ta suy ra: AGAD=BMBD=23ADAG=BDBM=32.
Ta có BD=CDBD=CD (vì DD là trung điểm của cạnh BCBC) nên BMBC=BM2BD=22.3=13BCBM=2BDBM=2.32=31.
Do đó BM=13BCBM=31BC (đpcm).
ABCD là hình thang suy ra ABAB // CDCD.
Áp dụng hệ quả định lí Thalès, ta có: OAOC =OBODOCOA =ODOB
Suy ra OA.OD=OB.OCOA.OD=OB.OC (đpcm).
Ta có DE//AC ⇒AEAB=CDBC⇒ABAE=BCCD (Talet)
Ta có DF//AB ⇒AFAC=BDBC⇒ACAF=BCBD (Talet)
⇒AEAB+AFAC=CDBC+BDBC=BCBC=1(dpcm)⇒ABAE+ACAF=BCCD+BCBD=BCBC=1(dpcm)
8CM
33
43
64