K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TH1: m=-2

BPT sẽ trở thành:

\(\left(-2+2\right)x^2-2\left(-2+2\right)x+1+3\cdot\left(-2\right)< =0\)

=>-5<=0(đúng)

=>Nhận

TH2: m<>-2

\(\text{Δ}=\left[-2\left(m+2\right)\right]^2-4\left(m+2\right)\left(3m+1\right)\)

\(=4\left(m^2+4m+4\right)-4\left(3m^2+7m+2\right)\)

\(=4\left(m^2+4m+4-3m^2-7m-2\right)=4\left(-2m^2-3m+2\right)\)

Để BPT luôn đúng với mọi x thực thì

\(\left\{{}\begin{matrix}\text{Δ}< =0\\m+2< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4\left(-2m^2-3m+2\right)< =0\\m< -2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-2m^2-3m+2< =0\\m< -2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m^2+3m-2>=0\\m< -2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2m^2+4m-m-2>=0\\m< -2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+2\right)\left(2m-1\right)>=0\\m< -2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>=\dfrac{1}{2}\\m< =-2\end{matrix}\right.\\m< -2\end{matrix}\right.\Leftrightarrow m< -2\)

Vậy: m<=-2

Chúng ta cần tìm giá trị nhỏ nhất (m) và giá trị lớn nhất (M) của biểu thức \( M = \sin^4(x) + \cos^4(x) \), sau đó tính giá trị của \( P = 2m + M^2 + 2024 \). **Bước 1: Tìm giá trị nhỏ nhất và lớn nhất của biểu thức \( M \)** Sử dụng đồng nhất thức cơ bản: \[ \sin^2(x) + \cos^2(x) = 1 \] Và: \[ \sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) \] \[ = 1 - 2\sin^2(x)\cos^2(x) \] Sử dụng tiếp...
Đọc tiếp

Chúng ta cần tìm giá trị nhỏ nhất (m) và giá trị lớn nhất (M) của biểu thức \( M = \sin^4(x) + \cos^4(x) \), sau đó tính giá trị của \( P = 2m + M^2 + 2024 \).

**Bước 1: Tìm giá trị nhỏ nhất và lớn nhất của biểu thức \( M \)**

Sử dụng đồng nhất thức cơ bản:
\[ \sin^2(x) + \cos^2(x) = 1 \]
Và:
\[ \sin^4(x) + \cos^4(x) = (\sin^2(x) + \cos^2(x))^2 - 2\sin^2(x)\cos^2(x) \]
\[ = 1 - 2\sin^2(x)\cos^2(x) \]

Sử dụng tiếp đồng nhất thức:
\[ \sin^2(x)\cos^2(x) = \left(\frac{\sin(2x)}{2}\right)^2 = \frac{\sin^2(2x)}{4} \]

Do đó:
\[ M = 1 - 2\cdot\frac{\sin^2(2x)}{4} = 1 - \frac{\sin^2(2x)}{2} \]

**Bước 2: Tìm giá trị nhỏ nhất và lớn nhất của \( M = 1 - \frac{\sin^2(2x)}{2} \)**

Biểu thức \(\sin^2(2x)\) có giá trị từ 0 đến 1, do đó:
\[ 0 \leq \sin^2(2x) \leq 1 \]

Áp dụng vào biểu thức \( M \):
\[ M = 1 - \frac{\sin^2(2x)}{2} \]
Khi \(\sin^2(2x) = 0\):
\[ M = 1 - 0 = 1 \]

Khi \(\sin^2(2x) = 1\):
\[ M = 1 - \frac{1}{2} = \frac{1}{2} \]

Vậy:
\[ m = \frac{1}{2} \]
\[ M = 1 \]

**Bước 3: Tính giá trị của \( P \)**

\[ P = 2m + M^2 + 2024 \]
\[ P = 2 \cdot \frac{1}{2} + 1^2 + 2024 \]
\[ P = 1 + 1 + 2024 \]
\[ P = 2026 \]

Vậy, giá trị của \( P \) là \( 2026 \). Nếu bạn có thêm bất kỳ câu hỏi nào hoặc cần hỗ trợ thêm, đừng ngần ngại hỏi nhé! 😊

 

0
9 tháng 11 2024

8163 - 59 + 255 

= 8104 + 255

=8359

9 tháng 11 2024

Cảm ơn bạn nha

23 tháng 10 2024

\(sin^2x+cos^2x=1\)

=>\(cos^2x=1-\left(\dfrac{2}{3}\right)^2=1-\dfrac{4}{9}=\dfrac{5}{9}\)

mà \(cosx>0\)(Vì \(x\in\left(0;\dfrac{\Omega}{2}\right)\))

nên \(cosx=\sqrt{\dfrac{5}{9}}=\dfrac{\sqrt{5}}{3}\)

15 tháng 10 2024

Xét ΔABC có \(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)

=>\(\dfrac{AB}{sin40}=\dfrac{8}{sin50}\)

=>\(AB=8\cdot\dfrac{sin40}{sin50}\simeq6,71\left(cm\right)\)

Xét ΔABC có \(\widehat{B}+\widehat{C}=50^0+40^0=90^0\)

nên ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\simeq\dfrac{1}{2}\cdot8\cdot6,71=26,84\left(cm^2\right)\)

Xét ΔABC có \(\dfrac{AB}{sinC}=2R\)

=>\(2R=\dfrac{6.71}{sin40}\simeq10,44\)

=>\(R\simeq5,22\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC=\sqrt{8^2+6,71^2}\simeq10,44\left(cm\right)\)

\(p=\dfrac{AB+AC+BC}{2}=\dfrac{6,71+8+10,44}{2}\simeq12,6\left(cm\right)\)

\(r=\dfrac{S}{p}=\dfrac{26.84}{12,6}\simeq2,13\left(cm\right)\)

24 tháng 9 2024

Dưới đây là các tập hợp A, B, và C được viết bằng cách nêu tính chất đặc trưng:

a) Tập hợp A: A = {x | x = n^2 - 1, n ∈ {1, 2, 3, 4, 5, 6}}

b) Tập hợp B: B = {x | x = 5k - 4, k ∈ ℤ}

c) Tập hợp C: C = {x | x = 2n + 1, n ∈ {0, 1, 2}} ∪ {x | x = -2}

24 tháng 9 2024

              Giải:

a;  Xét dãy số: 0; 3; 8; 15; 24; 35

     st1 = 0 = 0.2 = (1 - 1).(1 + 1)

    st2 = 3 =  1.3 = (2 - 1).(2 + 1)

     st3 = 8 = 2.4 = (3  - 1).(3 + 1)

    st4  = 15 = 3.5 = (4 - 1).(4 + 1)

    st5 = 24 =  4.6 = (5 - 1).(5 + 1)

    st6 = 35 =  5.7 = (6 - 1.).(6 + 1)

    ..................

   stn =   (n  - 1).(n + 1)

A = {(n -1).(n +1)/ 6 ≥ n \(\in\) N*}