tìm tập nghiệm S của bất phương trình x(x-1)2 \(\geq\) 4-x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2|x+1|-\left(x+4\right)>0\)
\(\Leftrightarrow2|x+1|>x+4\)
\(\Leftrightarrow\)
- \(x+4< 0\Leftrightarrow x< -4\)
- \(x+4\ge0\Leftrightarrow x\ge-4\)
- \(2\left(x+1\right)< -\left(x+4\right)\Leftrightarrow x< -2\)
- \(2\left(x+1\right)>x+4\Leftrightarrow x>2\)
Từ trên: \(\Leftrightarrow\hept{\begin{cases}x< -4\\-4\le x\le-2\\x>2\end{cases}}\)
Qua trên ta suy ra được: \(x\in\left(-\infty;-2\right)\) hợp \(\left(2,+\infty\right)\)
1. Gọi độ dài ban đầu của các cạnh góc vuông lần lượt là: a; b ( a, b> 0; cm)
=> Diện tích của tam giác vuông ba đầu: \(\frac{1}{2}.a.b\)
Khi tăng mỗi cạnh 2 cm thì diện tích tăng 17 cm ^2
=> \(\frac{1}{2}\left(a+2\right)\left(b+2\right)=\frac{1}{2}.ab+17\)
<=> \(ab+2b+2a+4=ab+34\)
<=> \(a+b=15\)(1)
Khi giảm chiều dài cạnh kia 3cm và cạnh kia 1 cm thì diện tích giảm 11 cm^2
=> \(\frac{1}{2}\left(a-3\right)\left(b-1\right)=\frac{1}{2}ab-11\)
<=> \(ab-3b-a+3=ab-22\)
<=> \(-a-3b=-25\)(2)
Từ (1); (2) => a = 10; b = 5 ( thỏa mãn)
Vậy độ dài hai cạnh cần tìm là 10cm và 5 cm.
Câu 2.
+) Gọi tuổi An hiện nay là x ( x>0; tuổi )
Khi đó tuổi cha An là: 3x (tuổi )
+) 5 năm trước
tuổi An là x - 5 ( tuổi )
tuổi cha An là : 3x - 5 ( tuổi )
Theo bài ra ta có phương trình :
3x - 5 = 4 ( x - 5)
<=> x = 15 ( tm)
Tuổi cha An là : 3 . 15 = 45 tuổi .
Cha An sinh An năm: 45 - 15 = 30 ( tuổi )
\(a)=-56\)
\(b)=30\)
\(c)=-48\)
\(d)=\frac{8}{100}\times900=8\times9=72\)
Áp dụng BĐT Bunhiacopxki:
\(\left(1^2+4^2\right)\left(a^2+\frac{1}{b^2}\right)\ge\left(1.a+4.\frac{1}{b}\right)^2\)\(\Rightarrow a^2+\frac{1}{b^2}\ge\frac{1}{17}\left(a+\frac{4}{b}\right)^2\)
\(\Rightarrow\sqrt{a^2+\frac{1}{b^2}}\ge\frac{1}{\sqrt{17}}\left(a+\frac{4}{b}\right)\)
Tương tự, ta có: \(\sqrt{b^2+\frac{1}{c^2}}\ge\frac{1}{\sqrt{17}}\left(b+\frac{4}{c}\right)\)
và \(\sqrt{c^2+\frac{1}{a^2}}\ge\frac{1}{\sqrt{17}}\left(c+\frac{4}{a}\right)\)
Cộng từng vế của các BĐT trên, ta được:
\(P\ge\frac{1}{\sqrt{17}}\left(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c}\right)\)\(\ge\frac{1}{\sqrt{17}}\left(a+b+c+\frac{36}{a+b+c}\right)\)(svac - xơ)
\(=\frac{1}{\sqrt{17}}\left[\left(a+b+c\right)+\frac{9}{4\left(a+b+c\right)}+\frac{135}{4\left(a+b+c\right)}\right]\ge\frac{3\sqrt{17}}{2}\)
Vậy \(P=\sqrt{a^2+\frac{1}{b^2}}\)\(+\sqrt{b^2+\frac{1}{c^2}}\)\(+\sqrt{c^2+\frac{1}{a^2}}\ge\frac{3\sqrt{17}}{2}\)
(Dấu "="\(\Leftrightarrow a=b=c=2\))
Bài em làm ok rồi nhưng mà dấu bằng xảy ra bị sai. Em kiểm tra lại!๖²⁴ʱČøøℓ ɮøү 2к⁷༉
Cái này nãy tui mới làm ở bên h_ọ_c_24 ý.
\(x\left(x-1\right)^2\ge4-x\)
\(\Leftrightarrow x\left(x^2-2x+1\right)\ge4-x\)
\(\Leftrightarrow x^3-2x^2+x\ge4-x\)
\(\Leftrightarrow x^3-2x^2+2x-4\ge0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2\right)\ge0\)
\(\Leftrightarrow x-2\ge0\left(Vì:x^2+2>0\forall x\right)\)
\(\Leftrightarrow x\ge2\)
Vậy \(S=\left\{2;+\infty\right\}\)
@ Băng Băng @ Mình không kí hiệu tập nghiệm như vậy nhé em:
S = [ 2; \(+\infty\))