20,21+a+20,01×b+20,2×c+79,79×a+79,9×b+79,8×c.
Biết a+b+c =20,21.
Tìm a,b,c
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn My nói sai.
Vì 1574 nếu làm tròn đến hàng trăm thì sẽ là 1600
\(7,5\times X+X+X\times1,5=8,7\)
=>\(X\times\left(7,5+1+1,5\right)=8,7\)
=>\(X\times10=8,7\)
=>X=0,87
Lời giải:
$35,41\times 38-35,41\times 27-35,41$
$=35,41\times (38-27-1)=35,41\times 10=354,1$
\(\dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+3+...+2022}+\dfrac{2}{x}=2\)
=>\(\dfrac{1}{2\text{x}\dfrac{3}{2}}+\dfrac{1}{3\text{x}\dfrac{4}{2}}+...+\dfrac{1}{2022\text{x}\dfrac{2023}{2}}+\dfrac{2}{x}=2\)
=>\(\dfrac{2}{2\text{x}3}+\dfrac{2}{3\text{x}4}+...+\dfrac{2}{2022\text{x}2023}+\dfrac{2}{x}=2\)
=>\(\dfrac{1}{2\text{x}3}+\dfrac{1}{3\text{x}4}+...+\dfrac{1}{2022\text{x}2023}+\dfrac{1}{x}=1\)
=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}+\dfrac{1}{x}=1\)
=>\(\dfrac{1}{2}-\dfrac{1}{2023}+\dfrac{1}{x}=1\)
=>\(\dfrac{1}{x}+\dfrac{2021}{4046}=1\)
=>\(\dfrac{1}{x}=1-\dfrac{2021}{4046}=\dfrac{2025}{4046}\)
=>\(x=\dfrac{4046}{2025}\)
A = 1 + 2 + 22 + 23 + ... + 299 + 2100 . (1)
⇒2A=2+22+23+...+2101(2)
Trừ 2 vế của (1) và (2) cho nhau được A=2101−1
Lời giải:
Gọi chiều dài và chiều rộng của khu đất lần lượt là $a$ và $b$ (m)
Theo bài ra ta có:
$ab=96$
$(a-1)(b+2)=ab+14$
$\Leftrightarrow ab+2a-b-2=ab+14$
$\Leftrightarrow 2a-b=16$
$\Leftrightarrow b=2a-16$. Thay vào điều kiện $ab=96$ suy ra:
$a(2a-16)=96$
$\Leftrightarrow a(a-8)=48$
$\Leftrightarrow a^2-8a-48=0$
$\Leftrightarrow (a+4)(a-12)=0$
Do $a>0$ nên $a=12$
$b=96:12=8$
Vậy chiều dài và chiều rộng khu đất lần lượt là $12$ m và $8$ m
Gọi chiều rộng và chiều dài khu đất lần lượt là a(m),b(m)
(Điều kiện: a>0; b>0)
Nếu tăng chiều rộng thêm 2m và giảm chiều dài đi 1m thì diện tích tăng thêm 14m2 nên ta có:
(a+2)(b-1)=ab+14
=>ab-a+2b-2=ab+14
=>-a+2b=16
=>a-2b=-16
=>a=2b-16
Diện tích là 96m2 nên ab=96
=>\(b\left(2b-16\right)=96\)
=>\(b\left(b-8\right)=48\)
=>\(b^2-8b-48=0\)
=>(b-12)(b+4)=0
=>\(\left[{}\begin{matrix}b=12\left(nhận\right)\\b=-4\left(loại\right)\end{matrix}\right.\)
Vậy: Chiều dài là 12m; Chiều rộng là 96:12=8(m)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$P\geq \frac{(a+b+c)^2}{a+b+b+c+c+a}=\frac{(a+b+c)^2}{2(a+b+c)}=\frac{a+b+c}{2}$
Áp dụng BĐT AM-GM:
$1\leq \sqrt{ab}+\sqrt{bc}+\sqrt{ac}\leq \frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}=a+b+c$
$\Rightarrow P\geq \frac{a+b+c}{2}\geq \frac{1}{2}$
Vậy $P_{\min}=\frac{1}{2}$
Giá trị này đạt tại $a=b=c=\frac{1}{3}$
Sửa đề: 20,21xa+20,1xb+20,2xc+79,79xa+79,9xb+79,8xc
=a x(20,21+79,79)+bx(20,1+79,9)+cx(20,2+79,8)
=100xa+100xb+100xc
=100x(a+b+c)
=100x20,21=2021
Mình cần tìm a,b,c chứ không phải làm cách thuận tiện ạ.