tiính độ dài chiều cao mặt bên của hình chóp tứ giác đều bt diện tích xung quanh là 60cm2 và độ dài cạnh đáy là 6cm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(9\left(x-3y\right)^2-25\left(2x+y\right)^2\)
\(=\left[3\left(x-3y\right)\right]^2-\left[5\left(2x+y\right)\right]^2\)
\(=\left(3x-9y\right)^2-\left(10x+5y\right)^2\)
\(=\left[3x-9y+10x+5y\right]\left[3x-9y-\left(10x+5y\right)\right]\)
\(=\left(13x-4y\right)\left(-7x-14y\right)\)
\(=-7\left(x+2y\right)\left(13x-4y\right)\)
9(x - 3y)² - 25(2x + y)²
= 3².(x - 3y)² - 5².(2x + y)²
= (3x - 9y)² - (10x + 5y)²
= (3x - 9y - 10x - 5y)(3x - 9y + 10x + 5y)
= (-7x - 14y)(13x - 4y)
= -7(x + 2y)(13x - 4y)
a/
Ta có
DC=AD+BC (gt)
CI=BC (gt)
=> DC=AD+CI
Ta có
DC=DI+CI
=> AD=DI => tg ADI cân tại D \(\Rightarrow\widehat{DAI}=\widehat{DIA}\)
Mà \(\widehat{DAI}=\widehat{BAI}\)
\(\Rightarrow\widehat{DIA}=\widehat{BAI}\) Mà 2 góc này ở vị trí so le trong
=> AB//CD => ABCD là hình thang
b/
Ta có
CI=BC (gt) => tg BCI cân tại C \(\Rightarrow\widehat{CBI}=\widehat{CIB}\)
Ta có
AB//CD \(\Rightarrow\widehat{ABI}=\widehat{CIB}\) (góc so le trong)
\(\Rightarrow\widehat{CBI}=\widehat{ABI}\) => BI là phân giác của góc B
Gọi a, a + 1, a + 2 lần lượt là ba số tự nhiên liên tiếp (a ∈ ℕ)
Trong ba số tự nhiên liên tiếp chắc chắn có 1 số chẵn nên tích của chúng chia hết cho 2 (1)
Khi lấy a chia cho 3 thì số dư có thể là 0; 1; 2
*) Khi số dư là 0 thì a ⋮ 3
⇒ a(a + 1)(a + 2) ⋮ 3 (2)
*) Khi số dư là 1, đặt a = 3k+ 1 (k ∈ ℕ)
⇒ a + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) ⋮ 3
⇒ a(a + 1)(a + 2) ⋮ 3 (3)
*) Khi số dư là 2, đặt = 3k + 2 (k ∈ ℕ)
⇒ a + 1 = 3k + 2 + 1 = 3k + 3 = 3(k + 1) ⋮ 3
⇒ a(a + 1)(a + 2) ⋮ 3 (4)
Từ (2), (3), (4) ⇒ a(a + 1)(a + 2) ⋮ 3 (5)
Từ (1) và (5) ⇒ tích của ba số tự nhiên liên tiếp chia hết cho 2 và 3
* Hình bình hành:
- Định nghĩa: là tứ giác có các cạnh đối song song.
- Tính chất:
+ Các cạnh đối bằng nhau;
+ Các góc đối bằng nhau;
+ Hai đường chéo cắt nhau tại trung điểm của mỗi đường.
- Dấu hiệu nhận biết:
+Tứ giác có các cạnh đối bằng nhau là hình bình hành.
+ Tứ giác có một cặp cạnh đối song song và bằng nhau là hình bình hành.
+ Tứ giác có các góc đối bằng nhau là hình bình hành.
+ Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành.
* Hình thoi
- Định nghĩa: là tứ giác có bốn cạnh bằng nhau.
- Tính chất:
+ Hai đường chéo vuông góc với nhau;
+ Hai đường chéo là các đường phân giác của các góc trong hình thoi.
- Dấu hiệu nhận biết:
+ Hình bình hành có hai cạnh kề bằng nhau là hình thoi.
+ Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.
+ Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.
* Hình vuông:
- Định nghĩa: là tứ giác có bốn góc vuông và bốn cạnh bằng nhau.
- Tính chất: hai đường chéo bằng nhau, vương góc với nhau, cắt nhau tại trung điểm mỗi đường và là các đường phân giác của các góc của hình vuông.
- Dấu hiệu nhận biết:
+ Hình chữ nhật có hai cạnh kề bằng nhau là hình vuông.
+ Hình chữ nhật có hai đường chéo vuông góc là hình vuông.
+ Hình chữ nhật có một đường chéo là đường phân giác của một góc là hình vuông.
\(\left(2x-3\right)\left(x+3\right)\left(5-x\right)\)
\(=\left(2x^2+6x-3x-9\right)\left(5-x\right)\)
\(=10x^2+30x-15x-45-2x^3-6x^2+3x^2+9x\)
\(=-2x^3+7x^2+24x-45\)
a/
Xét tg ABC có
\(AB\perp AC\) (gt)
\(ME\perp AC\) (gt)
=> ME//AB (cùng vg với AC)
\(\Rightarrow\dfrac{CE}{AE}=\dfrac{CM}{BM}\) (Talet) Mà
CM = BM \(\Rightarrow\dfrac{CE}{AE}=\dfrac{CM}{BM}=1\Rightarrow CE=AE\) => E là trung điểm AC
C/m tương tự ta cũng có D là trung điểm AB
b/
Xét tg ABC có
AD=BD (cmt); AE=CE (cmt) => DE là đường trung bình của tg ABC
=> DE//BC => DE//BM
\(\Rightarrow DE=\dfrac{BC}{2}\)
Ta có
\(BM=CM=\dfrac{BC}{2}\)
=> DE=BM
=> BDEM là hình bình hành (Tứ giác có 1 cặp cạnh đối // và = nhau là hình bình hành)
c/
Độ dài chiều cao mặt bên của hình chóp tứ giác đều:
60 : 4 : 6 . 2 = 5 (cm)