Tứ giác ABCD có A - B = 50. Các tia phân giác của C, D cắt nhau tại I và CID = 115. Tính các góc A, B.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = (x -1)3- (x +1)3
A =x3 -3x2 + 3x - 1 - x3 - 3x2 - 3x - 1
A = -6x2 - 2
B = (x-y)3 + 3xy (x-y)
B = x3 -3x2y + 3xy2 - y3 + 3x2y - 3xy2
B = x3 - y3
Bạn tham khảo nhé.
Q = (3x-5)(2x+11)-(2x+3)(3x+7)
Q = 6x2 + 33x – 10x – 55 – (6x2 + 14x + 9x + 21)
Q = 6x2 + 33x – 10x – 55 – 6x2 - 14x - 9x – 21
Q = (6x2 – 6x2) + (33x – 10x - 14x - 9x) + (– 55 – 21)
Q = 0 + 0 – 76
Q = -76
\(\dfrac{3x^2+9x-3}{x^2+x-2}-\dfrac{x+1}{x+2}+\dfrac{x-2}{1-x}\left(ĐK:x\ne\left\{1;-2\right\}\right)\\ =\dfrac{3x^2+9x-3}{\left(x+2\right)\left(x-1\right)}-\dfrac{x+1}{x+2}-\dfrac{x-2}{x-1}\\ =\dfrac{3x^2+9x-3-\left(x+1\right)\left(x-1\right)-\left(x-2\right)\left(x+2\right)}{\left(x+2\right)\left(x-1\right)}\\ =\dfrac{3x^2+9x-3-\left(x^2-1\right)-\left(x^2-4\right)}{\left(x+2\right)\left(x-1\right)}\)
\(=\dfrac{3x^2+9x-3-x^2+1-x^2+4}{\left(x+2\right)\left(x-1\right)}\\ =\dfrac{x^2+9x+2}{\left(x+2\right)\left(x-1\right)}\)
(a):
\(P=\dfrac{3x-12}{3x^2-3x-36}=\dfrac{3\left(x-4\right)}{3\left(x^2-x-12\right)}\\ =\dfrac{3\left(x-4\right)}{3\left(x-4\right)\left(x+3\right)}\\ =\dfrac{1}{x+3}\left(ĐK:x\ne\left\{4;-3\right\}\right)\)
(b):
\(x=\dfrac{1}{2}\left(TMDK\right)=>P=1:\left(\dfrac{1}{2}+3\right)=1:\dfrac{7}{2}=\dfrac{2}{7}\)
(c):
\(P=\dfrac{1}{x+3}\in Z=>1⋮\left(x+3\right)\\ =>x+3\inƯ\left(1\right)=\left\{\pm1\right\}\\ =>x\in\left\{-4;-2\right\}\left(TMDK\right)\)
\(P=\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\\ =2x^3-3x^2+4x+4x^2-6x+8-\left(2x^3+x^2-2x-1\right)\\ =2x^3+x^2-2x+8-2x^3-x^2+2x+1\\ =9\)
Xét tứ giác ABCD
\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)
\(\Rightarrow\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{2}=180^o\)
Xét tg CID có
\(\widehat{ICD}+\widehat{IDC}=180^o-\widehat{CID}=180^o-115^o=65^o\)
\(\Rightarrow\dfrac{\widehat{C}+\widehat{D}}{2}=65^o\Rightarrow\dfrac{\widehat{A}+\widehat{B}}{2}=180^o-65^o=115^o\Rightarrow\widehat{A}+\widehat{B}=230^o\)
\(\Rightarrow\widehat{A}=\dfrac{230^o+50^o}{2}=140^o\Rightarrow\widehat{B}=230^o-140^o=90^o\)