cho đường tròn O , từ một điểm S nằm ngoài O , kẻ tiếp tuyến SB và SC với đường tròn O , B và C là các tiếp điểm. Kẻ đường thẳng SO cắt BC tại D và cắt cung lớn BC của đường tròn O tại A. kẻ CH vuông góc với AB tại H, M là trung điểm của CH. AM cắt đường tròn O tại điểm thứ hai là N. CM tứ giác DMCN nội tiếp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải thích the ý hiểu thôi nhé
ta có thể chắc chắn rằng \(O,Q,N\) THẲNG HÀNG VÀ \(O,M,P\)THẲNG HÀNG
VÀ DO \(OM\perp AB;OP\perp CD\),2 ĐOẠN THẲNG \(AB\) VÀ \(DC\) SONG SONG VỚI NHAU NÊN \(MP\) LÚC NÀY SẼ LÀ KHOẢNG CÁCH CỦA 2 ĐOẠN THẲNG \(AB\) VÀ \(DC\) ,MP KO ĐỔI(DO CẠNH HÌNH VUÔNG ABCD KO ĐỔI),VÌ THẾ NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OP+OM=MP SẼ KO ĐỔI,CÒN NẾU O NẰM NGOÀI THÌ LÚC NÀY O SẼ KO CÒN NẰM TRÊN ĐOẠN THẲNG MP nên lúc này \(OM+OP\ne MP\),NHƯ VẬY TA ĐÃ CM ĐC NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OM+OP KO ĐỔI(1)
CM TƯƠNG TỰ THÌ TA CÓ OQ+ON KO ĐỔI(2)(KHI MÀ O NẰM TRONG HÌNH VUÔNG ABCD)
TỪ 1 VÀ 2 \(\Rightarrow\) KHI O nằm TRONG HÌNH VUÔNG ABCD THÌ \(OM+ON+OP+OQ\) KO ĐỔI(ĐPCM)
COI QUÂN XE LÀ ĐIỂM O THÌ DO QUÂN XE CHỈ ĐI NGANG DỌC NÊN NÓ CŨNG ĐỊNH RA TRÊN BÀN CỜ NHỮNG ĐOẠN THẲNG VUÔNG GÓC NHÉ,CM TƯƠNG TỰ TRÊN LÀ ĐC
Có thể giải thích như thế này:
Ta có \(S_{OAB}=\frac{1}{2}OM.AB=\frac{1}{2}a.OM\), \(S_{OBC}=\frac{1}{2}ON.BC=\frac{1}{2}a.ON\), \(S_{OCD}=\frac{1}{2}OP.CD=\frac{1}{2}a.OP\), \(S_{ODA}=\frac{1}{2}OQ.AD=\frac{1}{2}a.OQ\)
Từ đó ta có: \(S_{ABCD}=S_{OAB}+S_{OBC}+S_{OCD}+S_{OAD}=\frac{1}{2}a\left(OM+ON+OP+OQ\right)\)
Vì hình vuông ABCD cố định nên \(S_{ABCD}\)không đổi và \(a\)không đổi, từ đó dẫn đến \(OM+ON+OP+OQ\)không đổi.
(*) Cũng coi quân xe là điểm O và giải thích tương tự.
Ta có : 2P = \(\frac{\sqrt{4x^2-4xy+4y^2}}{x+y+2z}+\frac{\sqrt{4y^2-4yz+4z^2}}{y+z+2x}+\frac{\sqrt{4z^2-4zx+4x^2}}{z+x+2y}\)
\(=\frac{\sqrt{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}}{x+y+2z}+\frac{\sqrt{\left(2y-z\right)^2+\left(\sqrt{3}z\right)^2}}{y+z+2x}+\frac{\sqrt{\left(2z-x\right)^2+\left(\sqrt{3}x\right)^2}}{z+x+2y}\)
Lại có \(\frac{\sqrt{\left[\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2\right]\left[\left(1^2+\left(\sqrt{3}\right)^2\right)\right]}}{x+y+2z}\ge\frac{\left[\left(2x-y\right).1+3y\right]}{x+y+2z}=\frac{2\left(x+y\right)}{x+y+2z}\)
=> \(\sqrt{\frac{\left(2x-y\right)^2+\left(\sqrt{3}y\right)^2}{x+y+2z}}\ge\frac{x+y}{x+y+2z}\)(BĐT Bunyakovsky)
Tương tự ta đươc \(2P\ge\frac{x+y}{x+y+2z}+\frac{y+z}{2x+y+z}+\frac{z+x}{2y+z+x}\)
Đặt x + y = a ; y + z = b ; x + z = c
Khi đó \(2P\ge\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)-3\)
\(\ge\left(a+b+c\right).\frac{9}{2\left(a+b+c\right)}-3\ge\frac{9}{2}-3=\frac{3}{2}\)
=> \(P\ge\frac{3}{4}\)
Dấu "=" xảy ra <=> x = y = z
bài 8 : bỏ dấu hoặc rồi tính
a;( 17 - 299) + ( 17 - 25 + 299)
\(\int^{4x-2y=3}_{6x-3y=5}\Leftrightarrow\int^{12x-6y=9}_{12x-6y=10}\Leftrightarrow\int^{0=1}\Rightarrow hpt_{ }\) VÔ NGHIỆM
\(\widehat{BAC}=60^0\Rightarrow\widehat{BOC}=120^0\)
\(BC=\sqrt{2R^2-2R^2.\cos120^0}=R\sqrt{3}=2\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.3.2\sqrt{3}=3\sqrt{3}\left(cm^2\right)\)
Gọi \(BC\) cắt \(\left(O;r\right)\) lần thứ hai tại \(N\), \(CD\) là đường kính của \(\left(O;R\right)\)
Do hình chiếu vuông góc của \(O\) trên \(BC\) là trung điểm của \(MN,BC\) nên \(MB=NC\)
Tính đối xứng tâm của đường tròn nên \(NC=AD,NC||AD\) hay \(MB=||AD\)
Suy ra \(AM=DB\). Ta biến đổi:
\(MA^2+MB^2+MC^2=MA^2+\left(MB+MC\right)^2-2MB.MC\)
\(=DB^2+BC^2-2\left(R^2-OM^2\right)=\left(2R\right)^2-2\left(R^2-r^2\right)=2\left(R^2+r^2\right)\)
ĐK: \(x\ge\frac{5}{2}\).
\(\sqrt{x+2-3\sqrt{2x-5}}+\sqrt{x-2+\sqrt{2x-5}}=2\sqrt{2}\)
\(\Leftrightarrow\sqrt{2x+4-6\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)
\(\Leftrightarrow\sqrt{2x-5-2.3.\sqrt{2x-5}+9}+\sqrt{2x-5+2.1.\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}+1\right|=4\)(1)
Nếu \(\sqrt{2x-5}\ge3\Leftrightarrow x\ge7\): (1) tương đương với:
\(\sqrt{2x-5}-3+\sqrt{2x-5}+1=4\)
\(\Leftrightarrow\sqrt{2x-5}=3\Leftrightarrow x=7\)(thỏa mãn)
Nếu \(\sqrt{2x-5}< 3\Leftrightarrow\frac{5}{2}\le x< 7\): (1) tương đương với:
\(3-\sqrt{2x-5}+\sqrt{2x-5}+1=4\)
\(\Leftrightarrow4=4\)(luôn đúng)
Vậy phương trình có nghiệm là \(\frac{5}{2}\le x\le7\).