K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
1 tháng 9 2021

ta có :

\(ab>2016a+2017b\Rightarrow a\left(b-2016\right)>2017b\) hay ta có : \(a>\frac{2017b}{b-2016}\)

Vậy \(a+b>\frac{2017b}{b-2016}+b=b+2017+\frac{2016\times2017}{b-2106}=b-2016+\frac{2016\times2017}{b-2106}+2016+2017\)

\(\ge2\sqrt{2016\times2017}+2016+2017=\left(\sqrt{2016}+\sqrt{2017}\right)^2\)

Vậy ta có đpcm

1 tháng 9 2021

a, Xét tam giác AHB vuông tại H, đường cao MH 

\(AH^2=AM.AB\)( hệ thức lượng ) (1) 

Xét tam giác AHC vuông tại H, đường cao HN 

\(AH^2=AN.AC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\)(3) 

b, Xét tam giác AMN và tam giác ACB ta có : 

^A _ chung 

\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )

\(\frac{MN}{BC}=\frac{AM}{AC}\)(4) 

Ta có : BC = HB + HC = 9 + 4 = 13 cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AC^2=HC.BC=9.13=117\Rightarrow AC=3\sqrt{13}\)cm 

Theo định lí Pytago : \(AB=\sqrt{BC^2-AC^2}=\sqrt{169-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{2\sqrt{13}.3\sqrt{13}}{13}=6\)cm 

lại có : \(AH^2=AM.AB\)cma => \(AM=\frac{36}{2\sqrt{13}}=\frac{18\sqrt{13}}{13}\)cm 

Thay vào (4) ta được : \(\frac{MN}{13}=\frac{\frac{18\sqrt{13}}{13}}{3\sqrt{13}}=6\)cm 

c, Lại có : \(AH^2=AN.AC\)cma => \(AN=\frac{36}{3\sqrt{13}}=\frac{12\sqrt{13}}{13}\)cm 

Ta có : \(S_{AMN}=\frac{1}{2}AN.AM=\frac{1}{2}.\frac{12\sqrt{13}}{13}.\frac{18\sqrt{13}}{13}=\frac{108}{13}\)cm 2

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.2\sqrt{13}.3\sqrt{13}=39\)cm 2

Do \(S_{AMN}+S_{BMNC}=S_{ABC}\Rightarrow S_{BMNC}=S_{ABC}-S_{AMN}\)

\(=39-\frac{108}{13}=\frac{399}{13}\)cm2

1 tháng 9 2021

Bài 2 : 

a, \(P=\frac{x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\)Với x > 0 ; \(x\ne1\)

\(=\frac{x+2}{\sqrt{x}}+\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}=\frac{x+2\sqrt{x}+2}{\sqrt{x}}\)

b, Ta có : \(P=5\Rightarrow\frac{x+2\sqrt{x}+2}{\sqrt{x}}=5\Rightarrow x+2\sqrt{x}+2=5\sqrt{x}\)

\(\Leftrightarrow x-3\sqrt{x}+2=0\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)=0\Leftrightarrow x=1\left(ktm\right);x=4\left(tm\right)\)

1 tháng 9 2021

i don't know

NM
1 tháng 9 2021

a. ta có : \(P=\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{4}\ge2\sqrt{\frac{1}{\sqrt{x}}.\frac{\sqrt{x}}{4}}=1\)

Vậy GTNN của P là 1

P không có giá trị lớn nhất.

h. ta có P thuộc Z thì \(P^2=\frac{1}{x}+\frac{1}{2}+\frac{x}{16}\) là số chính phương

mà \(16P=\frac{16}{x}+8+x\text{ nguyên}\) nên x là ước của 16

lập Bảng ta có :

\(x\)124816
\(16P^2\)2518161825

Vậy chỉ có duy nhất x=4 thỏa mãn điều kiện P^2 là số chính phương, thay lại thấy thỏa mãn 

g. Không so sánh được nhé

NM
1 tháng 9 2021

ta có :

\(\frac{1}{cos^2x}=\frac{sin^2x+cos^2x}{cos^2x}=1+\left(\frac{sinx}{cosx}\right)^2=1+tan^2x\)

\(\frac{1}{sin^2x}=\frac{sin^2x+cos^2x}{sin^2x}=1+\left(\frac{cosx}{sinx}\right)^2=1+cot^2x\)

NM
1 tháng 9 2021

ta có :

\(\sqrt{x^2+2x+1}+\sqrt{x^2+4x+4}=\left|x+1\right|+\left|x+2\right|\ge\left|x+1-x-2\right|=1\)

Dấu bằng xảy ra khi : \(\left(x+1\right)\left(x+2\right)\le0\Leftrightarrow-2\le x\le-1\)