Cho biểu thức A=(n+1)(n+2)(n+3)(n+4)(n+5)+2 với n ϵ N. Chứng minh rằng A không phải là bình phương của bất kì số tự nhiên nào.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ba số tự nhiên liên tiếp có dạng: n; n+1; n + 2 (n \(\in\) N)
Ta cần chứng minh: n(n +1)(n+2) ⋮ 3
nếu n ⋮ 3 ⇒ n(n +1).(n +2) ⋮ 3 (đpcm)
Nếu n = 3k + 1 ⇒ n + 2 = 3k + 1 + 2 = 3k + 3 ⋮ 3
⇒n(n+1).(n+2) ⋮ 3 (đpcm)
Nếu n = 3k + 2 ⇒ n + 1 = 3k + 2 + 1 = 3k + 3 ⋮ 3
⇒ n.(n + 1).(n +2) ⋮ 3 (đpcm)
A = (\(\dfrac{1}{2}\) + 1).(\(\dfrac{1}{3}\) + 1).(\(\dfrac{1}{4}\) + 1)...(\(\dfrac{1}{99}\) + 1)
A = \(\dfrac{1+2}{2}\).\(\dfrac{1+3}{3}\).\(\dfrac{1+4}{4}\)...\(\dfrac{1+99}{99}\)
A = \(\dfrac{3}{2}\).\(\dfrac{4}{3}\).\(\dfrac{5}{4}\)....\(\dfrac{100}{99}\)
A = \(\dfrac{100}{2}\) \(\times\) \(\dfrac{3.4.5...99}{3.4.5...99}\)
A = 50
\((-8)\cdot(12+14)+12\cdot(8-14)\\=-8\cdot12+(-8)\cdot14+12\cdot8+12\cdot(-14)\\=(-8\cdot12+12\cdot8)+8\cdot(-14)+12\cdot(-14)\\=-14\cdot(8+12)\\=-14\cdot20\\=-280\)