K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
3 tháng 3 2024

Lời giải:
Áp dụng TCDTSBN:

$\frac{a}{5}=\frac{b}{3}=\frac{c}{7}=\frac{a-b}{5-3}=\frac{10}{2}=5$
$\Rightarrow a=5.5=25; b=5.3=15; c=7.5=35$

a: 4x=5y

=>\(\dfrac{x}{5}=\dfrac{y}{4}\)

7y=4z

=>\(\dfrac{y}{4}=\dfrac{z}{7}\)

Do đó: \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}\)

mà x-y-z=24

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{7}=\dfrac{x-y-z}{5-4-7}=\dfrac{24}{-6}=-4\)

=>\(x=-4\cdot5=-20;y=-4\cdot4=-16;z=-4\cdot7=-28\)

b:

Sửa đề: x+y-z=38

 \(\dfrac{x}{5}=\dfrac{y}{4}\)

=>\(\dfrac{x}{15}=\dfrac{y}{12}\left(1\right)\)
\(\dfrac{y}{3}=\dfrac{z}{2}\)

=>\(\dfrac{y}{12}=\dfrac{z}{8}\left(2\right)\)

Từ (1),(2) suy ra \(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{8}\)

mà x+y-z=38

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta đưọc:

\(\dfrac{x}{15}=\dfrac{y}{12}=\dfrac{z}{8}=\dfrac{x+y-z}{15+12-8}=\dfrac{38}{19}=2\)

=>\(x=2\cdot15=30;y=2\cdot12=24;z=2\cdot8=16\)

3 tháng 3 2024

4x=5y;7y=4zvax-y-z=24
Để giải hệ phương trình này, chúng ta sẽ sử dụng phương pháp thế vào. Trước tiên, chúng ta sẽ giải phương trình đầu tiên để tìm giá trị của $x$ dựa trên $y$:

$$4x = 5y$$
$$x = \frac{5y}{4}$$

Tiếp theo, chúng ta sẽ thay thế giá trị của $x$ vào phương trình thứ hai để tìm giá trị của $z$ dựa trên $y$:

$$7y = 4z$$
$$z = \frac{7y}{4}$$

Cuối cùng, chúng ta sẽ thay thế giá trị của $x$ và $z$ vào phương trình thứ ba để tìm giá trị của $v$:

$$x - y - z = 24$$
$$\frac{5y}{4} - y - \frac{7y}{4} = 24$$
$$\frac{5y - 4y - 7y}{4} = 24$$
$$\frac{-6y}{4} = 24$$
$$-6y = 96$$
$$y = -16$$

Sau khi tìm được giá trị của $y$, chúng ta có thể tính toán các giá trị còn lại:

$$x = \frac{5y}{4} = \frac{5(-16)}{4} = -20$$
$$z = \frac{7y}{4} = \frac{7(-16)}{4} = -28$$
$$v = x - y - z = -20 - (-16) - (-28) = -20 + 16 + 28 = 24$$

Vậy, giá trị của $x$, $y$, $z$ và $v$ lần lượt là -20, -16, -28 và 24.

AH
Akai Haruma
Giáo viên
3 tháng 3 2024

Lời giải:

$F(x)=x^3+x^2+(2a+3)x-3a=x^2(x-2)+3x(x-2)+(2a+9)x-3a$

$=x^2(x-2)+3x(x-2)+(2a+9)(x-2)+2(2a+9)-3a$

$=(x-2)(x^2+3x+2a+9)+(a+18)$

$\Rightarrow F(x)$ chia $x-2$ dư $a+18$

Để số dư là $14$

$\Rightarrow a+18=14$

$\Rightarrow a=-4$

3 tháng 3 2024

b) xét ΔANK và ΔBNC, có:

NK = NC (gt)

\(\widehat{ANK}=\widehat{BNC}\) (đối đỉnh)

NB = NA (gt)

⇒ ΔANK = ΔBNC (c-g-c)

vì M là trung điểm của BC nên ta có: \(BC=MB+MC=2MC\)

mà KA = BC (2 cạnh tương ứng)

\(\Rightarrow BC=KA=2MC\)

c) ta có MB = MC (giả thiết) 

⇒ MA là đường trung tuyến của ΔABC

⇒ MA cũng là đường phân giác của ΔABC

⇒ MA là đường phân giác của \(\widehat{BAC}\)

\(\widehat{BAC}=\widehat{BAM}+\widehat{MAC}=2\widehat{BAM}\\ \Rightarrow\widehat{BAM}=\dfrac{\widehat{BAC}}{2}=\dfrac{50^0}{2}=25^0\left(1\right)\)

Vì ΔABC cân tại A nên

\(\widehat{B}=\widehat{C}=\dfrac{\left(180^0-\widehat{A}\right)}{2}=\dfrac{\left(180^0-50^0\right)}{2}=\dfrac{130^0}{2}=65^0\)

mà \(\widehat{KAB}=\widehat{ABC}\) (2 góc tương ứng)

\(\Rightarrow\widehat{KAB}=65^0\left(2\right)\)

Từ (1) và (2) ta có:

\(\widehat{KAM}=\widehat{KAB}+\widehat{AMB}=65^0+25^0=90^0\)

2 tháng 3 2024

có ai làm câu d chưa cho mình xin hướng dẫn ạ

2 tháng 3 2024

Câu 4:

Vì tam giác ABC cân tại A; AM là đường cao của tam giác ABC

Nên AM là trung trực của BC (trong tam giác cân đường cao cũng là đường trung trực của tam giác)

⇒ GC = GB ⇒ tam giác BCG cân tại G

  ⇒ GM là phân giác của góc CGB (vì trong tam giác cân đường cao cũng là đường phân giác)

⇒ \(\widehat{CGM}\) = \(\dfrac{1}{2}\) \(\widehat{BGC}\) = 900 x \(\dfrac{1}{2}\) = 450

Xét tam giác vuông AIG có: 

\(\widehat{IAG}\) = 900 - \(\widehat{IGA}\) = 900 - 450 = 450

⇒ \(\widehat{IGA}\) = \(\widehat{IAG}\) = 450

⇒ tam giác AIG vuông cân tại I

⇒ IA = IG

AH // GI ⇒ AH \(\perp\) AI (vì một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó vuông góc với đường thẳng còn lại)

 \(\widehat{IAH}\) = 900

Xét tứ giác: AHGI có:

\(\widehat{IAH}\) = \(\widehat{AIG}\) = \(\widehat{IGH}\) = 900; IA = IG (cmt)

⇒ AHGI là hình vuông

⇒ AG \(\perp\) HI  (tính chất hai đường chéo của hình vuông)

Mặt khác  AG \(\perp\) BC (gt)

⇒ HI // BC (vì hai đường thẳng cùng vuông góc với đường thẳng thứ ba thì song song với nhau)

Kết Luận: HI // BC (đpcm)

 

 

 

 

 

Khi x=-3 thì \(\left(x^{2023}+3x^{2022}+1\right)^{2000}=\left[\left(-3\right)^{2023}+3\cdot\left(-3\right)^{2022}+1\right]^{2000}\)

\(=\left[-3^{2023}+3^{2023}+1\right]^{2000}\)

\(=1^{2000}=1\)