K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2021

bổ sung đề : cho tam giác ABC vuông tại A, đường cao AH ... 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\Rightarrow\frac{1}{AC^2}=\frac{1}{AH^2}-\frac{1}{AB^2}=\frac{1}{12^2}-\frac{1}{15^2}\)

\(\Leftrightarrow\frac{1}{AC^2}=\frac{225-144}{12^2.15^2}=\frac{81}{12^2.15^2}\Leftrightarrow AC=\frac{12.15}{9}=\frac{180}{9}=20\)

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(BC^2=AB^2+AC^2=400+225=625\Rightarrow BC=25\)

Theo định lí tam giác ABH vuông tại H 

\(AB^2=BH^2+AH^2\Rightarrow BH^2=AB^2-AH^2=225-144=81\Rightarrow BH=9\)

=> CH = BC - BH = 25 - 9 = 16 

13 tháng 9 2021

\(2\sqrt{3}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=2\sqrt{3}+\left|2-\sqrt{3}\right|=2\sqrt{3}+2-\sqrt{3}=2+\sqrt{3}\)

13 tháng 9 2021

a, \(\sqrt{17-12\sqrt{2}}-\sqrt{17+12\sqrt{2}}\)

\(=\sqrt{17-2.3.2\sqrt{2}}-\sqrt{17+2.3.2\sqrt{2}}\)

\(=\sqrt{9-2.3.2\sqrt{2}+8}-\sqrt{9+2.3.2\sqrt{2}+8}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}-\sqrt{\left(3+2\sqrt{2}\right)^2}=\left|3-2\sqrt{2}\right|-\left|3+2\sqrt{2}\right|\)

\(=3-2\sqrt{2}-3-2\sqrt{2}=-4\sqrt{2}\)

b, \(\sqrt{31-12\sqrt{3}}-\sqrt{31+12\sqrt{3}}\)

\(=\sqrt{31-2.2.3\sqrt{3}}-\sqrt{31+2.2.3\sqrt{3}}\)

\(=\sqrt{\left(3\sqrt{3}-2\right)^2}-\sqrt{\left(3\sqrt{3}+2\right)^2}=\left|3\sqrt{3}-2\right|-\left|3\sqrt{3}+2\right|\)

\(=3\sqrt{3}-2-3\sqrt{3}-2=-4\)

NM
13 tháng 9 2021

để \(\frac{1}{\sqrt{4-x}}\text{ có nghĩa thì }\hept{\begin{cases}4-x\ge0\\4-x\ne0\end{cases}\Leftrightarrow x< 4}\)

\(\frac{4x}{\sqrt{x-1}}\text{ có nghĩa thì }\hept{\begin{cases}x-1\ge0\\x-1\ne0\end{cases}\Leftrightarrow x>1}\)